robot de la enciclopedia para niños

Óxido de zinc para niños

Enciclopedia para niños
Datos para niños
 
Óxido de zinc
Zinc oxide.jpg
Nombre IUPAC
Óxido de Zinc
General
Otros nombres Monóxido de zinc
Fórmula semidesarrollada ZnO
Fórmula molecular ?
Identificadores
Número CAS 1314-13-2
Número RTECS ZH4810000
ChEBI 36560
ChEMBL CHEMBL1201128
ChemSpider 14122
DrugBank 09321
PubChem 14806
UNII SOI2LOH54Z
InChI
InChI=InChI=1S/O.Zn
Key: XLOMVQKBTHCTTD-UHFFFAOYSA-N
Propiedades físicas
Apariencia Sólido blanco
Densidad 5606 kg/; 5,606 g/cm³
Masa molar 81.38 g/mol
Punto de fusión 2248 K (1975 °C)
Índice de refracción (nD) 2,015
Propiedades químicas
Solubilidad en agua 1.6 mg/L a 29 °C
Peligrosidad
NFPA 704

NFPA 704.svg

1
2
0
W
Compuestos relacionados
Compuestos relacionados Clorato de zinc
Cloruro de zinc
Sulfato de zinc
Sulfuro de zinc
Valores en el SI y en condiciones estándar
(25 y 1 atm), salvo que se indique lo contrario.

El óxido de zinc es un compuesto inorgánico con la fórmula ZnO. El ZnO es un polvo blanco insoluble en agua, y es comúnmente usado como aditivo en diversos materiales y productos, como por ejemplo: caucho, plásticos, cerámicas, vidrio, cemento, lubricantes, pinturas, ungüentos, adhesivos, selladores, pigmentos, comida, baterías, ferritas, retardadores de fuego y cintas de primeros auxilios. Aunque se encuentra de forma natural en el mineral cincita, la mayoría del óxido de zinc es producido sintéticamente.

El ZnO es un semiconductor del grupo de semiconductores II-VI. La adición de impurezas para modular sus propiedades eléctricas (dopaje) nativa del semiconductor debida a las vacantes del oxígeno o intersticiales de zinc es tipo n.

Este semiconductor tiene diversas propiedades favorables, incluyendo buena transparencia, alta movilidad de electrones, amplio rango de energía donde no existen estados electrónicos (bandgap), y fuerte luminiscencia a temperatura ambiente. Estas propiedades son importantes para las aplicaciones emergentes: electrodos transparentes en aparatos de cristal líquido, ventanas ahorradoras de energía o protectoras del calor, y electrónicos como transistores de película delgada y diodos emitentes de luz.

Producción

Para el uso industrial, el ZnO se produce a niveles de 105 toneladas por año mediante tres procesos principales:

Proceso indirecto

En el proceso indirecto o francés, zinc metálico es derretido en un crisol de grafito y vaporizado a temperaturas superiores a los 907°C (típicamente cercanas a los 1000°C). El vapor de zinc reacciona con el oxígeno del aire para formar el ZnO, acompañado por un descenso en su temperatura y luminiscencia brillante. Las partículas de óxido de zinc son transportadas a un ducto de enfriamiento y recolectadas en una bolsa. Este método indirecto se popularizó gracias a LeClaire (Francia) en 1844 y por ello es comúnmente conocido como el proceso francés. El producto normalmente consiste de partículas de óxido de zinc aglomeradas con un tamaño promedio de 0.1 a pocos micrómetros. Por el peso, la mayoría del óxido de zinc del mundo es manufacturado mediante el proceso francés.

Proceso directo

El proceso directo o americano empieza con diversos compuestos de zinc contaminados, tales como minerales de zinc o fundiciones de subproductos. Los precursores de zinc son reducidos (reducción carbotérmica) mediante calentamiento con una fuente de carbón como antracita para producir vapor de zinc, el cual es oxidado como en el proceso indirecto. Debido a la baja pureza del material de origen, el producto final también presenta baja calidad en el proceso directo comparada a la del indirecto.

Proceso químico húmedo

Una pequeña cantidad de la producción industrial involucra el proceso químico húmedo, el cual empieza con soluciones acuosas de sales purificadas de zinc, de las que el carbonato de zinc o el hidróxido de zinc es precipitado. Después el precipitado es filtrado, lavado, secado y calcinado a temperaturas de aproximadamente 800°C.

Síntesis en el laboratorio

Existe un amplio número de métodos especializados para producir ZnO para estudios científicos y diferentes aplicaciones. Estos métodos se pueden clasificar por la forma del ZnO resultante (abultado, película delgada, nanocables), temperatura (“baja” que es cercana a la temperatura ambiente o “alta”, que es T ~ 1000 °C), tipo de proceso (descomposición de vapor o desarrollo de solución) y otros parámetros.

Cristales individuales grandes (muchos centímetros cúbicos) pueden ser desarrollados por transporte de gas (deposición en fase vapor), síntesis hidrotérmica o por fusión. Sin embargo, debido a la alta presión de vapor del ZnO, producirlo por fusión es problemático. La producción por transporte de gas es difícil de controlar, dejando el método hidrotérmico como el de preferencia. Las películas delgadas pueden ser producidas por deposición química de vapor, epitaxia metal orgánica en fase vapor, electrodeposición, deposición por láser pulsado, pulverización catódica (sputtering), síntesis sol-gel, deposición de capa atómica, atomizador de pirolisis, etc.

El polvo ordinario de óxido de zinc puede ser producido en el laboratorio al electrolizar una solución de bicarbonato de sodio con un ánodo de zinc. El hidróxido de zinc y el gas de hidrógeno son producidos. El hidróxido de zinc al ser calentado se descompone en óxido de zinc.

Zn + 2 H2O → Zn(OH)2 + H2
Zn(OH)2 → ZnO + H2O

Historia

Los compuestos de zinc fueron probablemente utilizados por los primeros humanos, de formas procesadas o sin procesar, como pintura o ungüento medicinal, pero su composición es incierta. El uso de pushpanjan, probablemente óxido de zinc, como bálsamo para los ojos y heridas abiertas, es mencionado en el texto de medicina india el Charaka Samhita, el cual se cree data del año 500 a. C. o antes. El ungüento de óxido de Zinc también es mencionado por el médico griego Dioscórides (siglo I d. C.). Avicena menciona el óxido de zinc en The Canon of Medicine (1025 d.C.) donde lo menciona como el tratamiento preferido para diversas condiciones en la piel, incluyendo cáncer de piel. Aunque en la actualidad no es usado para tratar el cáncer, se utiliza para tratar una amplia variedad de condiciones en la piel, en productos como el polvo de bebé y cremas contra dermatitis provocadas por el pañal (rozaduras), crema de calamina, champú anti caspa, y ungüentos antisépticos.

Los romanos producían cantidades considerables de latón (una aleación de cobre y cinc) durante el año 200 a. C., gracias a un proceso de cementación donde el cobre se hacía reaccionar con óxido de cinc. Se cree que el óxido de Zinc se producía por calentamiento de minerales de Zinc en un horno de cuba. Esto liberaba el Zinc metálico como vapor, el cual después ascendía por un tubo y se condensaba como óxido. Este proceso era descrito por Dioscorides en el siglo I d. C. El óxido de Zinc también se ha recuperado de minas de Zinc en Zawar, India, desde la segunda mitad del primer milenio antes de Cristo. Este era presuntamente hecho de la misma forma y usado para producir latón.

Del siglo XII al XVI, el zinc y el óxido de zinc eran conocidos y producidos en India utilizando una forma primitiva de síntesis directa. De India, la manufactura de Zinc se movió a China en el siglo XVII. En 1743, el primer horno de fundición de Zinc europeo se fundó en Bristol, Reino Unido.

El principal uso del óxido de Zinc (Zinc blanco) era en pinturas y como aditivo en ungüentos. El Zinc blanco era aceptado como pigmento en pinturas de óleo en 1834, pero este no se mezclaba bien con el óleo. Este problema se solucionó al optimizar la síntesis del ZnO. En 1845, LeClaire en París produjo la pintura de óleo en escalas grandes, y para 1850 el Zinc blanco era manufacturado por Europa. El triunfo de la pintura de Zinc blanco se debió a sus ventajas sobre la pintura tradicional de plomo: el blanco de Zinc es esencialmente permanente a la luz del sol, no es ennegrecido por aire que contiene azufre, no es tóxico y es más económico. Debido a que el blanco de Zinc es muy “limpio”, es valioso para realizar matices con otros colores, pero hace una película seca quebradiza cuando no se mezcla con otros colores. Por ejemplo, durante los últimos años de 1890 y los primeros de 1900, algunos artistas utilizaron blanco de Zinc como base de sus pinturas de óleo. Todas estas pinturas desarrollaron grietas con el paso de los años.

En tiempos recientes, la mayoría del óxido de Zinc es usada en la industria del caucho para hacerlo resistente a la corrosión. En la década de 1970, la segunda mayor aplicación del ZnO era el fotocopiado. El ZnO de alta calidad, que se producía mediante el “proceso francés”, se añadía al papel de fotocopiado como relleno. Esta aplicación pronto se sustituyó con titanio.

Aplicaciones

Las aplicaciones del polvo de óxido de zinc son numerosas, y las principales son resumidas abajo. La mayoría de las aplicaciones explotan la reactividad del óxido como precursor de otros compuestos de zinc. Para aplicaciones en la ciencia material, el óxido de zinc tiene un alto índice de refracción, alta conductividad térmica, propiedades antibacteriales y de protección UV. Por lo tanto, es añadido a materiales y productos incluyendo plásticos, cerámicas, cristales, cemento, caucho, lubricantes, pinturas, ungüentos, adhesivos, selladores, fabricación de hormigón, pigmentos, comidas, baterías, ferritas, retardadores de fuego, etc.

Manufactura de caucho

Entre el 50% y el 60% del ZnO es usado en la industria del caucho. El óxido de Zinc junto con el ácido esteárico es usado en la vulcanización del caucho. La adición del ZnO también protege al caucho de hongos (ver aplicaciones médicas) y luz UV.

Industria de la cerámica

La industria de la cerámica consume una significativa cantidad de óxido de zinc, en particular el esmalte cerámico y composiciones horneadas. La relativamente alta capacidad calorífica, conductividad térmica y la temperatura de estabilidad del ZnO unido a coeficientes de expansión comparablemente bajos son propiedades deseadas en la producción de cerámicas. El ZnO afecta el punto de fusión y las propiedades ópticas de los barnices, esmaltes, y formulaciones cerámicas. El óxido de Zinc con una expansión baja, el flujo secundario mejora la elasticidad de los barnices al reducir el cambio de viscosidad como función de la temperatura y ayuda a prevenir el cuarteo. Al sustituir ZnO por BaO y PbO, la capacidad calorífica disminuye y la conductividad térmica incrementa. El Zinc en cantidades pequeñas mejora el desarrollo de superficies lustrosas y brillantes. Sin embargo, de cantidades moderadas a altas, produce superficies mate y cristalinas. Con respecto al color, el Zinc tiene una complicada influencia.

Medicina

El óxido de Zinc como una mezcla con cerca de 0,5% de óxido de hierro III (Fe2O3) es llamado calamina y es usado en la loción de calamina. Dos minerales, cincita y hemimorphite, han sido llamados calamina históricamente. Cuando se mezcla con eugenol, un ligando, el óxido de Zinc eugenol es formado, el cual tiene aplicaciones como regenerador y prostodoncia en odontología.

Reflexionando las propiedades básicas del ZnO, las partículas finas del óxido tienen propiedades desodorizantes y antibacteriales y es por ello que se agregan a materiales como la fábrica de algodón, caucho, productos de cuidado bucal, y empaquetado de comida. La acción antibacterial mejorada de las partículas finas comparadas con el material abultado no es exclusivo del ZnO y es observado en otros materiales como la plata. Esta propiedad resulta del incremento del área de superficie de las partículas finas.

El óxido de Zinc es ampliamente usado para tratar una variedad de condiciones en la piel, en productos como polvo para bebés y cremas protectoras para tratar rozaduras, crema de calamina, champús anti caspa, y ungüentos antisépticos. Es también un componente en la cinta (llamada “cinta de óxido de cinc”) usada por atletas como vendaje para prevenir daño de tejidos blandos durante sus entrenamientos.

El óxido de Zinc puede ser usado en ungüentos, cremas, y lociones para proteger contra quemaduras por el sol y otros daños a la piel causados por la luz ultravioleta. Tiene el más amplio espectro de reflexión de rayos UVA y UVB que es aprobado para el uso en bloqueadores solares y es completamente fotoestable. Cuando es usado como ingrediente de un bloqueador solar, el óxido de Zinc bloquea ambos los rayos UVA (320-400 nm) y UVB (280-320 nm) de luz ultravioleta. El óxido de Zinc y los otros bloqueadores solares más comunes, dióxido de titanio, son considerados no irritantes, no alergénicos, y no comedogénicos. El Zinc del óxido de Zinc es, sin embargo, ligeramente absorbido por la piel.

Muchos protectores solares usan nano partículas de óxido de Zinc (junto con partículas de dióxido de titanio) pues esas pequeñas partículas no dispersan la luz y por ello no se muestran blancos. Ha habido preocupación pues estos podrían ser absorbidas por la piel. Un estudio publicado en 2010 encontró que de 0.23% a 1.31% (promedio de 0.42%) de los niveles de Zinc en la sangre en muestras de sangre venosa podían ser trazas de Zinc de nano partículas de ZnO aplicadas en la piel de los humanos por 5 días, las trazas también se encontraron en muestras de orina. En contraste, una revisión exhaustiva de la literatura médica en el 2011 dijo que no había evidencia de que una absorción sistémica se encontrará en la literatura.

Las nano partículas de óxido de Zinc pueden mejorar la actividad antibacterial de la ciprofloxacina. Se ha demostrado que el ZnO nano que tiene un tamaño promedio de 20 nm y 45 nm puede mejorar la actividad antibacterial de la ciprofloxacina contra Staphylococcus aureus y Escherichia coli in vitro. El efecto de mejoramiento en este nano material es dependiente de la concentración contra todas las cepas examinadas. Este efecto se puede deber a dos razones. La primera, las nano partículas del óxido de Zinc pueden interferir con la proteína NorA, la cual se desarrolla para conferir resistencia en las bacterias y tiene actividad de bombeo que media el eflujo de fluoroquinolones hidrófilos de una célula. La segunda, las nano partículas del óxido de Zinc pueden interferir con la proteína Omf, la cual es responsable de la penetración de quinolones a la célula.

Filtros de cigarros

El óxido de Zinc es un constituyente de los filtros de cigarros. Un filtro que consiste de carbón impregnado con óxido de Zinc y óxido de hierro, remueve cantidades significativas de cianuro de hidrógeno (HCN) y sulfuro de hidrógeno (H2S) del humo de tabaco sin afectar su sabor.

Aditivo de comida

El óxido de Zinc es añadido a muchos productos alimenticios, incluyendo cereales de desayuno, como fuente de cinc, un nutriente necesario (sulfato de zinc también es usado con el mismo propósito). Algunas comidas pre empaquetadas incluyen cantidades traza de ZnO aunque no sea destinado como nutriente.

El óxido de Zinc estaba vinculado a la contaminación de dioxina en cerdos exportados en 2008 en la crisis de cerdo chilena. Se encontró que la contaminación por dioxina se debía a óxido de Zinc usado en el alimento de los cerdos.

Pigmento

El blanco de Zinc es usado como pigmento en pinturas y es más opaco que el litopón, pero menos opaco que el dióxido de titanio. Es también usado como revestimiento para papel. El blanco chino es un grado especial de blanco de Zinc usado en los pigmentos de los artistas. El uso de blanco de Zinc (óxido de cinc) como pigmento en la pintura en óleo empezó a mediados del siglo XVIII. Ha reemplazado al blanco de plomo y fue usado por pintores como Böcklin, Van Gogh, Manet, Munch, entre otros. Es también un ingrediente principal del maquillaje mineral (CI 77947)

Absorbente UV

El micronizado y la nano escala del óxido de Zinc y el dióxido de titanio permite una fuerte protección contra la radiación ultravioleta UVA, y son usados en lociones de bronceado,

así como en lentes de sol con bloqueo UV para uso en el espacio y para protección cuando se realiza una soldadura, siguiendo la investigación de los científicos en el laboratorio Jet Propulsión (JPL ).

Revestimientos

Las pinturas que contienen polvo de óxido de zinc han sido utilizadas como revestimientos anticorrosivos para metales. Son especialmente efectivas para galvanizar el hierro. El hierro es difícil de proteger pues su reactividad con revestidores orgánicos lleva la fragilidad y la falta de adhesión. Las pinturas de óxido de zinc retienen su flexibilidad y adherencia en estas superficies por muchos años.

El ZnO altamente el tipo n dopado con Al, Ga, o In es transparente y conductivo (transparencia ~90%, menos resistividad ~10−4 Ω·cm). Los revestimientos ZnO:Al son utilizados para ventanas que ahorran energía o protegen del calor. El revestimiento deja la parte visible del espectro, pero refleja la radiación infrarroja (IR) dentro del cuarto (ahorro de energía) o no permite a la radiación infrarroja entrar al cuarto (protección del calor), dependiendo en qué lado de la ventana este el revestimiento.

Plásticos, tales como el naftalato de polietileno (PEN), pueden ser protegidos al aplicar un revestimiento de óxido de zinc. El revestimiento reduce la difusión de oxígeno con PEN. Las capas de óxido de zinc pueden ser usadas en policarbonato (PC) en aplicaciones al exterior. El revestimiento protege al PC de la radiación solar y disminuye la velocidad de oxidación y la coloración amarillenta del PC.

Prevención contra la corrosión en reactores nucleares

El óxido de Zinc reducido a 64Zn (el isótopo de Zinc con masa atómica 64) es usado en la prevención de corrosión en reactores nucleares de agua presurizada. La reducción es necesaria pues el 64Zn es transformado en 65Zn radiactivo bajo irradiación por los neutrones del reactor.

Reformado de metano

El óxido de Zinc (ZnO) es utilizado como un paso de pre tratamiento para remover el sulfuro de hidrógeno (H2S) del gas natural siguiendo la hidrogenación de cualquier compuesto con azufre antes de un reformado de metano, el cual puede intoxicar al catalizador. A temperaturas entre los 230, H2S se convierte en agua por la siguiente reacción:

H2S + ZnO → H2O + ZnS

El sulfuro de Zinc (ZnS) se reemplaza con óxido de Zinc fresco cuando el óxido de Zinc ha sido consumado.

Seguridad

Como aditivo de comida, el óxido de zinc se encuentra en la lista de lo generalmente reconocido como seguro de la FDA, o sustancias GRAS.

El óxido de zinc no es tóxico; sin embargo, es peligroso inhalar los humos del óxido de zinc, que se generan cuando el zinc o las aleaciones de zinc son derretidos y oxidados a altas temperaturas. Este problema ocurre mientras se derrite el latón pues del punto de fusión del latón es cercano al punto de fusión del zinc.

La exposición al óxido de zinc en el aire, que también ocurre con la soldadura de acero galvanizado (chapado de cinc), puede resultar en una enfermedad nerviosa llamada fiebre por humos de metal. Por esta razón, típicamente el acero galvanizado no es soldado, o el zinc se remueve primero.

Véase también

Kids robot.svg En inglés: Zinc oxide Facts for Kids

kids search engine
Óxido de zinc para Niños. Enciclopedia Kiddle.