Richard Dedekind para niños
Datos para niños Julius Wilhelm Richard Dedekind |
||
---|---|---|
Richard Dedekind fundamentó la teoría de la recta real y creó la teoría de los ideales
|
||
Información personal | ||
Nacimiento | 6 de octubre de 1831 Brunswick (Confederación Germánica) |
|
Fallecimiento | 12 de febrero de 1916 Brunswick (Imperio alemán) |
|
Sepultura | Braunschweig Main Cemetery | |
Nacionalidad | Alemana | |
Familia | ||
Padres | Julius Levin Ulrich Dedekind Caroline Marie Henriette Emperius |
|
Educación | ||
Educación | Doctor en Filosofía y habilitación universitaria | |
Educado en |
|
|
Supervisor doctoral | Carl Friedrich Gauss y Peter Gustav Lejeune Dirichlet | |
Información profesional | ||
Ocupación | Matemático, filósofo y profesor universitario | |
Área | Álgebra, teoría de números, álgebra abstracta y número real | |
Empleador |
|
|
Miembro de |
|
|
Julius Wilhelm Richard Dedekind (6 de octubre de 1831 - 12 de febrero de 1916) fue un matemático alemán. Nació en Brunswick (en alemán, Braunschweig), el más joven de los cuatro hijos de Julius Levin Ulrich Dedekind. Vivió con Julia, su hermana soltera, hasta que esta falleció en 1914;. En 1848 entró en el Colegium Carolinum de su ciudad natal, y en 1850, con sólidos conocimientos de matemáticas en la Universidad de Gotinga.
Biografía
Dedekind aprendió matemáticas en los departamentos de matemáticas y física de aquella universidad, siendo uno de sus principales profesores Moritz Abraham Stern, y también física de la mano de Wilhelm Eduard Weber. Su tesis doctoral, supervisada por Gauss, se titulaba Über die Theorie der Eulerschen Integrale (Sobre la teoría de las Integrales eulerianas), y aunque en ella no se reflejaba el talento que mostró en sus trabajos posteriores, Gauss supo apreciar el don de Dedekind para las matemáticas. Dedekind recibió su doctorado en 1852, siendo el último alumno de Gauss, y trabajó a continuación en una tesis de habilitación, que era necesaria en Alemania para obtener la "venia docendi" (habilitación de enseñanza docente en universidades alemanas).
Durante los siguientes años, estudió teoría de números y otras materias con Gustav Dirichlet, al que le uniría una gran amistad. Para ampliar sus conocimientos, abordó el estudio de las funciones abelianas y elípticas de la mano del genial Bernhard Riemann. Sólo tras estas experiencias, en su formación, encontró al fin sus campos de trabajo principales: el álgebra y la teoría de números algebraicos. Se dice de él que fue el primero en impartir clases universitarias sobre la teoría de las ecuaciones de Galois. Fue además el primero en comprender el significado fundamental de las nociones de grupo, cuerpo, Ideal en el campo del álgebra, la teoría de números y la geometría algebraica.
Sus cortaduras zanjan definitivamente el problema de la fundamentación del análisis al definir el conjunto de los números reales a partir de los racionales. En su magistral artículo de 1872, Dedekind caracterizó los números reales como un cuerpo ordenado y completo, y ofreció un desarrollo de toda la cuestión que es un modelo de organización y claridad.
Su trabajo sobre los números naturales fue también fundamental, sentando bases para la teoría de conjuntos, junto con Frege y Cantor, y dando una fundamentación muy rigurosa de los llamados Axiomas de Peano (publicados por el italiano un año más tarde).
Con ser importantes, esas no fueron las contribuciones principales de Dedekind a la matemática pura: trabajó toda su vida en la teoría de números algebraicos, que en buena medida creó. Y en el proceso, sentó muchos de los métodos característicos del álgebra moderna, hasta el punto de que Emmy Noether solía repetir que "todo está ya en Dedekind".
La correspondencia de Dedekind con otros matemáticos resultó especialmente fructífera y estimulante: ante todo la correspondencia con Cantor, donde asistimos al nacimiento de la teoría de conjuntos transfinitos; pero también la correspondencia con H. Weber, que entre otras cosas condujo a un artículo pionero de la geometría algebraica; y la que mantuvo con Frobenius, impulsando el desarrollo de la teoría de representaciones de grupos.
Véase también
En inglés: Richard Dedekind Facts for Kids