robot de la enciclopedia para niños

65537-gono para niños

Enciclopedia para niños
Datos para niños
65537-gono
65537-gon.svg
Un 65537-gono regular
Características
Tipo Polígono regular
Lados 65.537
Vértices 65.537
Grupo de simetría Diedral (D65537), orden 2×65537
Símbolo de Schläfli {65537} (65537-gono regular)
Diagrama de Coxeter-Dynkin CDel node 1.pngCDel 6.pngCDel 5.pngCDel 5.pngCDel 3x.pngCDel 7.pngCDel node.png
Polígono dual Autodual
Área A = \frac {65537}{4} a^2 \cot \frac{\pi}{65537}
(lado a)
Ángulo interior 179,994507°
Propiedades
Convexo, isogonal, cíclico

En geometría, un 65537-gono es un polígono con 65.537 (216 + 1) lados. La suma de los ángulos interiores de cualquier 65537-gono que no sea autointersecante es de 11.796.300°. Presenta la particularidad de que se puede construir con regla y compás, al ser 65.537 un número de Fermat.

65537-gono regular

El área de un 65537-gono normal es (con a Plantilla:= longitud del lado)

A = \frac{65537}{4} a^2 \cot \frac{\pi}{65537}

Un 65537-gono regular completo no se distingue visualmente de una circunferencia, y su perímetro difiere del de la circunferencia circunscrita en aproximadamente 15 partes por mil millones.

Construcción

El 65537-gono regular (uno con todos los lados iguales y todos los ángulos iguales) es de interés por ser un polígono construible: es decir, se puede construir usando un compás y una regla sin marcar. Esto se debe a que 65.537 es un número de Fermat, siendo de la forma 22n + 1 (en este caso n = 4).

Por lo tanto, los valores \cos \frac{\pi}{65537} y \cos \frac{2\pi}{65537} son números algebraicos asociados a un polinomio de grado 32768 y, como cualquier número construible, se pueden escribir en términos de raíces cuadradas y no de raíces de orden superior.

Aunque Gauss sabía en 1801 que el 65537-gono regular era construible, Johann Gustav Hermes (1894) proporcionó la primera construcción explícita de un 65537-gono regular. La construcción es muy compleja; Hermes pasó 10 años completando el manuscrito de 200 páginas. Otro método implica el uso de un máximo de 1332 círculos de Carlyle, y las primeras etapas de este método se muestran a continuación. Este método soluciona problemas prácticos, ya que uno de estos círculos de Carlyle resuelve la ecuación de segundo grado x2 + x − 16384 = 0 (siendo 16384 precisamente 214).

Regular 65537-gon First Carlyle Circle.gif

Simetría

El 65537-gono regular tiene simetría diedral Dih65537, de orden 131.074. Dado que 65.537 es un número primo, hay un subgrupo con simetría diédrica: Dih1, y 2 simetrías grupo cíclico: Z65537 y Z1.

65537 grama

Un 65537 grama es una estrella de 65.537 lados. Como 65.537 es primo, hay 32.767 formas regulares representadas de la forma símbolos de Schläfli {65537/n}, para todos los números enteros 2 ≤ n ≤ 32768 como \left\lfloor \frac{65537}{2} \right\rfloor = 32768.

Véase también

Kids robot.svg En inglés: Regular polygon Facts for Kids

kids search engine
65537-gono para Niños. Enciclopedia Kiddle.