257-gono para niños
Datos para niños 257-gono regular |
||
---|---|---|
Polígono regular de 257 lados
|
||
Características | ||
Lados | 257 | |
Vértices | 257 | |
Grupo de simetría | Diedral , orden 2×257 | |
Símbolo de Schläfli | {257} | |
Diagrama de Coxeter-Dynkin | ||
Área | ||
Ángulo interior | ||
Propiedades | ||
Convexo, isogonal, cíclico | ||
En geometría, un 257-gono es un polígono de 257 lados. La suma de los ángulos interiores de cualquier 257-gon que no se cruce con él mismo es de 45.900°.
Contenido
257-gono regular
El área de un 257-gono regular es (con t Plantilla:= longitud de la arista):
Un 257-gono regular no es visualmente discernible de un círculo, y su perímetro difiere de su del círculo circunscrito por aproximadamente 24 partes por notación.
Construcción
El 257-gono regular (uno con todos los lados iguales y todos los ángulos iguales) es interesante porque es un polígono construible: es decir, que puede ser construido utilizando un compás y una regla. Esto es porque 257 es un número de Fermat, siendo de la forma 2^(2^n) + 1 (en este caso, de n = 3).
A pesar de que Gauss haya sabido que el 257-gono regular fuera construible, las primeras construcciones explícitas de este polígono fueron hechas por Magnus Georg Paucker en 1822 y Friedrich Julius Richelot en 1832. Another method involves the use of 150 circles, 24 being Carlyle circles: this method is pictured below. One of these Carlyle circles solves the quadratic equation x2 + x − 64 = 0. Otro método consiste en la construcción con 150 círculos, donde 24 de estos son círculos de Carlyle: se muestra debajo dicho método. Uno de estos círculos es de ecuación cuadrática x2 + x − 64 = 0.
Simetría
El 257-gono regular posee simetría Dih257, de orden 514. Como 257 es un número primo , tiene un subgrupo con simetría diedra: Dih1, y 2 simetrías cíclicas de grupo: Z257, y Z1.
Véase también
En inglés: Regular polygon Facts for Kids