robot de la enciclopedia para niños

Magnitud física para niños

Enciclopedia para niños
Archivo:Ampèremetre
Amperímetro de una alimentación estabilizada.

Una magnitud física (cantidad física o propiedad física) es una cantidad medible de un sistema físico a la que se le pueden asignar distintos valores como resultado de una medición o una relación de medidas. Las magnitudes físicas se miden usando un patrón que tenga bien definida esa magnitud, y tomando como unidad la cantidad de esa propiedad que posea el objeto patrón. Por ejemplo, se considera que el patrón principal de longitud es el metro en el Sistema Internacional de Unidades.

Existen magnitudes básicas y derivadas, que constituyen ejemplos de magnitudes físicas: la masa, la longitud, el tiempo, la carga eléctrica, la densidad, la temperatura, la velocidad, la aceleración y la energía. En términos generales, es toda propiedad de los cuerpos o sistemas que puede ser medida. De lo dicho se desprende la importancia fundamental del instrumento de medición en la definición de la magnitud.

La Oficina Internacional de Pesas y Medidas, por medio del Vocabulario Internacional de Metrología (International Vocabulary of Metrology, VIM), define a la magnitud como un atributo de un fenómeno, un cuerpo o sustancia que puede ser distinguido cualitativamente y determinado cuantitativamente. A diferencia de las unidades empleadas para expresar su valor, las magnitudes físicas se expresan en cursiva: así, por ejemplo, la «masa» se indica con m, y «una masa de 3 kilogramos» la expresaremos como m = 3 kg.

Tipos de magnitudes físicas

Las magnitudes físicas pueden ser clasificadas de acuerdo a varios criterios:

  • Según su expresión matemática, las magnitudes se clasifican en escalares, vectoriales y tensoriales.
  • Según su actividad, se clasifican en magnitudes extensivas e intensivas.

Magnitudes escalares, vectoriales y tensoriales

  • Las magnitudes escalares son aquellas que quedan completamente definidas por un número y las unidades utilizadas para su medida. Las magnitudes escalares están representadas por el ente matemático más simple, por un número. Podemos decir que poseen un módulo pero carecen de dirección. Su valor puede ser:
  • Las magnitudes vectoriales son aquellas que quedan caracterizadas por una cantidad (intensidad o módulo), una dirección y un sentido. En un espacio euclidiano, de no más de tres dimensiones, un vector se representa mediante un segmento orientado. Ejemplos de estas magnitudes son: la velocidad, la aceleración, la fuerza, el campo eléctrico, intensidad luminosa, etc.
Además, al considerar otro sistema de coordenadas asociado a un observador con diferente estado de movimiento o de orientación, las magnitudes vectoriales no presentan invariancia de cada uno de los componentes del vector y, por tanto, para relacionar las medidas de diferentes observadores se necesitan relaciones de transformación vectorial. En mecánica clásica el campo electrostático se considera un vector; sin embargo, de acuerdo con la teoría de la relatividad esta magnitud, al igual que el campo magnético, debe ser tratada como parte de una magnitud tensorial.
  • Las magnitudes tensoriales son las que caracterizan propiedades o comportamientos físicos modelizables mediante un conjunto de números que cambian tensorialmente al elegir otro sistema de coordenadas asociado a un observador con diferente estado de movimiento (marco móvil) o de orientación.

De acuerdo con el tipo de magnitud, debemos escoger leyes de transformación (por ej. la transformación de Lorentz) de las componentes físicas de las magnitudes medidas, para poder ver si diferentes observadores hicieron la misma medida o para saber qué medidas obtendrá un observador, conocidas las de otro cuya orientación y estado de movimiento respecto al primero sean conocidos.

Magnitudes extensivas e intensivas

Una magnitud extensiva es una magnitud que depende de la cantidad de sustancia que tiene el cuerpo o sistema. Las magnitudes extensivas son aditivas. Si consideramos un sistema físico formado por dos partes o subsistemas, el valor total de una magnitud extensiva resulta ser la suma de sus valores en cada una de las dos partes. Ejemplos: la masa y el volumen de un cuerpo o sistema, la energía de un sistema termodinámico, etc.

Una magnitud intensiva es aquella cuyo valor no depende de la cantidad de materia del sistema. Las magnitudes intensivas tienen el mismo valor para un sistema que para cada una de sus partes consideradas como subsistemas. Ejemplos: la densidad, la temperatura y la presión de un sistema termodinámico en equilibrio.

En general, el cociente entre dos magnitudes extensivas da como resultado una magnitud intensiva.

Representación covariante y contravariante

Las magnitudes tensoriales de orden igual o superior a uno admiten varias formas de representación tensorial según el número de índices contravariantes y covariantes. Esto no es muy importante si el espacio es euclídeo y se emplean coordenadas cartesianas, aunque si el espacio no es euclídeo o se usan coordenadas no cartesianas es importante distinguir entre diversas representaciones tensoriales que físicamente representan la misma magnitud. En relatividad general dado que en general el espacio-tiempo es curvo el uso de representaciones convariantes y cotravariantes es inevitable.

Así un vector puede ser representado mediante un tensor 1-covariante o mediante un tensor 1-contravariante. Más generalmente, una magnitud tensorial de orden k admite 2k representaciones tensoriales esencialmente equivalentes. Esto se debe a que en un espacio físico representable mediante una variedad riemanniana (o semiriemanninana como en el caso relativista) existe un isomorfismo entre tensores de tipo \scriptstyle (m,n) y los de tipo \scriptstyle (m',n') siempre y cuando \scriptstyle m+n = m'+n'. El paso de una representación a otra de otro tipo se lleva a cabo mediante la operación de «bajar y subir índices».

Magnitudes objetivas y no objetivas

Una magnitud se dice objetiva si las medidas de dicha magnitud por observadores diferentes pueden relacionarse de manera sistemática. En el contexto de la mecánica newtoniana se restringe el tipo de observador, y se considera que una magnitud es objetiva si se pueden relacionar sistemáticamente las medidas de dos observadores cuyo movimiento relativo en un instante dado es un movimiento de sólido rígido. Existen buenos argumentos para sostener que una ley física adecuada debe estar formulada en términos de magnitudes físicas objetivas. En el contexto de la teoría de la relatividad la objetividad física se amplia al concepto de covariancia de Lorentz (en relatividad especial) y covariancia general (en relatividad general).

Sistema Internacional de Unidades

El Sistema Internacional de Unidades se basa en dos tipos de magnitudes físicas:

Unidades básicas o fundamentales del Sistema Internacional de Unidades (SI)

Las magnitudes básicas derivadas del SI son las siguientes:

  • Longitud: metro (m). El metro es la distancia recorrida por la luz en el vacío en 1/299 792 458 segundos. Este patrón fue establecido en el año 1983.
  • Tiempo: segundo (s). El segundo es la duración de 9 192 631 770 períodos de la radiación correspondiente a la transición entre los dos niveles hiperfinos del estado fundamental del cesio-133. Este patrón fue establecido en el año 1967.
  • Masa: kilogramo (kg). El kilogramo está definido a base de la constante de Planck, esta equivaliendo a 6.62607015×10−34 kg⋅m²⋅s−1. Este patrón fue establecido en el año 2018, e implementado en el año 2019.
  • Intensidad de corriente eléctrica: amperio (A). El amperio o ampere es la intensidad de una corriente constante que, manteniéndose en dos conductores paralelos, rectilíneos, de longitud infinita, de sección circular despreciable y situados a una distancia de un metro uno de otro, en el vacío, produciría una fuerza igual a 2×10−7 newton por metro de longitud.
  • Temperatura: kelvin (K). El kelvin es la fracción 1/273,16 de la temperatura del punto triple del agua.
  • Cantidad de sustancia: mol (mol). El mol es la cantidad de sustancia de un sistema que contiene tantas entidades elementales como átomos hay en 12 gramos de carbono-12.
  • Intensidad luminosa: candela (cd). La candela es la unidad luminosa, en una dirección dada, de una fuente que emite una radiación monocromática de frecuencia 540×1012 Hz y cuya intensidad energética en dicha dirección es 1/683 vatios por estereorradián.

Unidades Fundamentales en el Sistema Cegesimal C.G.S.

  • Longitud: centímetro (cm). 1/100 del metro (m) S.I.
  • Tiempo: segundo (s). La misma definición del S.I.
  • Masa: gramo (g). 1/1000 del kilogramo (kg) del S.I.

Unidades Fundamentales en el Sistema Gravitacional Métrico Técnico

  • Longitud: metro (m). La misma definición del S.I.
  • Tiempo: segundo (s). La misma definición del S.I.
  • Fuerza: kilogramo-fuerza (kgf). El peso de una masa de 1 kg (S.I.), en condiciones normales de gravedad (g = 9,80665 m/s²).

Magnitudes físicas derivadas

Una vez definidas las magnitudes que se consideran básicas, las demás resultan derivadas y se pueden expresar como combinación de las primeras.

Las unidades derivadas se usan para las siguientes magnitudes: superficie, volumen, velocidad, aceleración, densidad, frecuencia, periodo, fuerza, presión, trabajo, calor, energía, potencia, carga eléctrica, diferencia de potencial, potencial eléctrico, resistencia eléctrica, etc.

Algunas de las unidades usadas para esas magnitudes derivadas son:

Véase también

Kids robot.svg En inglés: Physical quantity Facts for Kids

kids search engine
Magnitud física para Niños. Enciclopedia Kiddle.