robot de la enciclopedia para niños

Distancia para niños

Enciclopedia para niños
Archivo:Manhattan distance
Plano de Manhattan. La distancia euclidiana (segmento verde), no se corresponde con el «camino más corto posible» ente dos puntos de dicha ciudad, además de no existir solo un camino de menor longitud.

En las matemáticas, la distancia entre dos puntos del espacio euclídeo equivale a la longitud del segmento de la recta que los une, expresado numéricamente. En espacios más complejos, como los definidos en la geometría no euclidiana, el «camino más corto» entre dos puntos es un segmento recto con curvatura llamada geodésica.

En física, la distancia es una magnitud escalar, que se expresa en unidades de longitud.

Distancia en la geometría con coordenadas

Distancia en la recta

Existe una biyección (una correspondencia elemento a elemento) entre los puntos de una recta y el conjunto  \mathbb{R} de los números reales, de modo que a cada número real le corresponde un solo punto, y a cada punto, exactamente un número real. Para hacer esto se precisa de un punto O y fijo de la recta y otro punto U, tal que por definición 1 es la abscisa de U. Se denota U(1). Están a la derecha los puntos de abscisa positiva, a la izquierda los puntos de abscisa negativa, y el origen O, tiene abscisa 0. Tal recta provista de abscisas para su puntos se denomina recta real.

Si A(x_1) y B(x_2) son dos puntos de la recta real, entonces la distancia entre los puntos A y B es  d(A,B) = |x_2-x_1|

Distancia de dos puntos en el plano

Si A(x_1, y_1) y B(x_2, y_2) son dos puntos de un plano cartesiano, entonces la distancia entre dichos puntos es calculable de la siguiente manera: Creese un tercer punto, llamese P(x_2, y_1) a partir del cuál se forma un triángulo rectángulo. Prosiguiendo a usar el Teorema de Pitágoras , con el segmento AB cómo hipotenusa.H^2=(cat_1)^2+(cat_2)^2. Prosiguiendo a reemplazar la fórmula por los elementos de cada segmento y realizando el procedimiento:

d(AB)^2=AP^2+BP^2
d(AB)^2=(x_2-x_1)^2+(y_2-y_1)^2
\sqrt{d(AB)^2}=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}
d(AB) = \sqrt{(x_2-x_1)^2 +(y_2-y_1)^2}

Distancia en espacio métrico

Desde un punto de vista formal, para un conjunto de elementos X se define distancia o métrica como cualquier función matemática o aplicación d(a,b) de X \times X en \mathbb{R} que verifique las siguientes condiciones:

  • No negatividad:
 \forall a,b \in X \; : \quad d(a,b)\ge 0
a,b \in X, \quad d(a,b)=0   \quad \Longleftrightarrow \quad a = b
- Es decir, la distancia es cero si solo si se induce sobre el mismo punto
\forall a,b \in X \; : \quad d(a,b)= d(b,a)
  • Desigualdad triangular:
\forall a,b,c \in X \; : \quad d(a,b) \le d (a,c) + d (c,b)

Si dejamos de exigir que se cumpla esta última condición, al concepto resultante se le denomina pseudodistancia o pseudométrica.

La distancia es el concepto fundamental de la Topología de Espacios Métricos. Un espacio métrico no es otra cosa que un par (X,d), donde X es un conjunto en el que definimos una distancia d.

En el caso de que tuviéramos un par (X,d) y d fuera una pseudodistancia sobre X, entonces diríamos que tenemos un espacio pseudométrico.

Si (X,d) es un espacio métrico y E \subset X, podemos restringir d a E de la siguiente forma: d': E \times E \longrightarrow \mathbb{R} de forma que si x,y \in E entonces d'(x,y)=d(x,y) (es decir, d'=d|_{E \times E}). La aplicación d' es también una distancia sobre d, y como comparte sobre E \times E los mismos valores que d, se denota también de la misma manera, es decir, diremos que (E,d) es subespacio métrico de (X,d).

Distancia de un punto a un conjunto

Si (X,d) es un espacio métrico, E \subset X, E \ne \varnothing y x \in X, podemos definir la distancia del punto x al conjunto E de la siguiente manera:

d(x,E):= \inf \{d(x,y): y \in E\}.

Es de destacar las siguientes tres propiedades:

  • En primer lugar, en las condiciones dadas, siempre existirá esa distancia, pues d tiene por dominio X \times X, así que para cualquier y \in E existirá un único valor real positivo d(x,y). Por la completitud de \mathbb{R} y como la imagen de d está acotada inferiormente por 0, queda garantizada la existencia del ínfimo de ese conjunto, esto es, la distancia del punto al conjunto.
  • Si  x \in E entonces d(x,E)=0.
  • Puede ser que d(x,E)=0 pero x \notin E, por ejemplo si x es un punto de adherencia de E. De hecho, la clausura de E es precisamente el conjunto de los puntos de X que tienen distancia 0 a E.

Los casos de distancia de un punto a una recta o de distancia de un punto a un plano no son más que casos particulares de la distancia de un punto a un conjunto, cuando se considera la distancia euclidiana.

Puede utilizarse el siguiente método: Dado un punto (n,m) que no pertenece a la recta f(x), 1) Hallar la ecuación de la recta perpendicular a f(x) que pasa por (n,m). Esto acarrea dos pasos: hallar la pendiente (pendiente perpendicular) y hallar la ordenada al origen (reemplazando el punto (n,m) y despejando). 2) Hallar la intersección entre estas dos rectas. Esto acarrea dos pasos: hallar la x de la intersección por igualación, hallar la y de la intersección sustituyendo la x en cualquiera de las dos ecuaciones. Con esto se obtiene el punto (o,p) 3) Hallar la distancia entre (n,m) y (o,p).

Distancia entre dos conjuntos

Si (X,d) es un espacio métrico, A \subset X y B \subset X, A \ne \varnothing, B \ne \varnothing, podemos definir la distancia entre los conjuntos A y B de la siguiente manera:

d(A,B):= \inf \{d(x,y): x \in A, y \in B\}.

Por la misma razón que antes, siempre está definida. Además d(A,A)=0, pero puede ocurrir que d(A,B)=0 y sin embargo A \ne B. Es más, podemos tener dos conjuntos cerrados cuya distancia sea 0 y sin embargo sean disjuntos, e incluso que tengan clausuras disjuntas.

Por ejemplo, el conjunto A:= \{(x,0): x \in \mathbb{R}\} y el conjunto B:= \{(x,e^x): x \in \mathbb{R}\}. Por un lado, A=\operatorname{cl}(A), B=\operatorname{cl}(B) y A \cap B = \varnothing, y por otro d(A,B)=0.

La distancia entre dos rectas, la distancia entre dos planos, etc. no son más que casos particulares de la distancia entre dos conjuntos cuando se considera la distancia euclidiana.

Véase también

Kids robot.svg En inglés: Distance Facts for Kids

  • Distancia de Mahalanobis
  • Método de los cuadrantes centrados en un punto
  • Desplazamiento (vector)
  • Trayectoria
  • Recta real extendida
  • Medida de Lebesgue
  • Distancia de un punto a una recta
kids search engine
Distancia para Niños. Enciclopedia Kiddle.