robot de la enciclopedia para niños

Proyecto Genoma Humano para niños

Enciclopedia para niños
Archivo:Karyotype
Representación gráfica del cariotipo humano normal.
Datos para niños
Genética humana
Subtemas
  • Genoma humano
    • Proyecto Genoma Humano
  • Genética evolutiva
  • Variación genética
    • Distribución del tipo de sangre por país
    • Prueba genealógica de ADN
    • Genealogía genética
    • Raza y genética
    • Evolución reciente
    • Proyecto ADN por apellido
  • Mejora genética

El Proyecto Genoma Humano (PGH) fue un proyecto internacional de investigación científica con el objetivo fundamental de determinar la secuencia de pares de bases químicas que componen el ADN e identificar y cartografiar todos los genes de un genoma humano promedio desde un punto de vista físico y funcional, incluyendo tanto los genes que codifican proteínas como los que no.

En el año 2003, se completó la secuencia del genoma humano, aunque no se conoce la función del todo. El proyecto, dotado con 3000 millones de dólares, fue fundado en 1990 en el Departamento de Energía y los Nacionales de la Salud de los Estados Unidos, bajo la dirección del doctor Francis Collins, quien lideraba el grupo de investigación público, conformado por múltiples científicos de diferentes países, con un plazo de realización de 15 años. Debido a la amplia colaboración internacional, a los avances en el campo de la genómica, así como los avances en la tecnología computacional, un borrador inicial del genoma fue terminado en el año 2000 (anunciado conjuntamente por el expresidente Bill Clinton y el ex primer ministro británico Tony Blair el 26 de junio de 2000), finalmente el genoma completo fue presentado en abril del 2003, dos años antes de lo esperado. Un proyecto paralelo se realizó fuera del gobierno por parte de la Corporación Celera. La mayoría de la secuenciación se realizó en las universidades y centros de investigación de Estados Unidos, Canadá, Nueva Zelanda, Reino Unido y España.

Conocer la secuencia completa del genoma humano puede tener mucha relevancia cuanto a los estudios de biomedicina y genética clínica, desarrollando el conocimiento de enfermedades poco estudiadas, nuevas medicinas y diagnósticos más fiables y rápidos. Sin embargo descubrir toda la secuencia génica de un organismo no nos permite conocer su fenotipo. Como consecuencia, la ciencia de la genómica no podría hacerse cargo en la actualidad de todos los problemas éticos y sociales que ya están empezando a ser debatidos. Por eso el PGH necesita una regulación legislativa basada en la ética.

El Proyecto Genoma Humano tiene una extensión que es el Proyecto Microbioma Humano. Este intenta caracterizar las comunidades microbianas encontradas en diversas localizaciones del cuerpo humano para determinar las posibles correlaciones entre los cambios del microbioma y el estado de salud.

Se consideraría al microbioma como el último órgano humano por investigar.

Historia del Proyecto Genoma Humano

Inicios

En 1984 comenzaron las actividades propias del PGH, coincidiendo con la idea de fundar un instituto para la secuenciación del genoma humano por parte de Robert Sinsheimer, en ese momento Rector de la Universidad de California. De forma independiente el Departamento de Energía de Estados Unidos (DOE) se interesó por el proyecto, al haber estudiado los efectos que las actividades de sus programas nucleares producían en la genética y en las mutaciones. Entonces se conocía como «Proyecto HUGO».

En su comienzo, el Proyecto Genoma Humano, enfrentó a dos tipos de científicos: de un lado, los biólogos moleculares universitarios y del otro, biólogos de institutos de investigación del Instituto Nacional de Salud, organismo estatal que percibía grandes sumas económicas federales destinadas a la investigación. Si bien el enfrentamiento se basó en la preocupación de ambos científicos por la magnitud y los costes de la empresa a llevar a cabo, existían sobre todo discrepancias para definir las vías más adecuadas a la hora de lograr los objetivos fijados. Solo debemos observar los 28.2 millones de dólares destinados al periodo 88-89 para ubicarnos «materialmente». Por su parte, Estados Unidos se comprometieron a destinar parte de los fondos económicos del proyecto al estudio de los aspectos éticos y sociales del PGH.

James Watson asumió en 1988 la dirección ejecutiva de la Investigación del Genoma Humano en el NIH (Instituto Nacional de Salud). Al asumir el cargo, firmó un acuerdo de cooperación con el Departamento de Energía de Estados Unidos mediante el cual ambas instituciones se ayudarían mutuamente. De esta forma el PGH comenzó con el liderazgo del NIH en lugar del Departamento de Energía. El interés internacional por el proyecto creció de forma notable, motivado fundamentalmente por no quedar por detrás de Estados Unidos en un tema de tanta importancia. Para evitar repeticiones y solapamientos en los logros, se creó HUGO (Organización del Genoma Humano) para coordinar los trabajos de investigación.

Antes de los ochenta ya se conocía la secuencia de genes sueltos de algunos organismos, como también se conocían los genomas de entidades subcelulares, tales como virus y plásmidos. Así pues, no fue hasta 1986 cuando el Ministerio de Energía (DOE), concretó institucionalmente el Proyecto Genoma Humano (PGH) durante un congreso en Santa Fe. El PGH contaba con una buena suma económica y sería utilizado para estudiar los posibles efectos de las radiaciones sobre el ADN. Al siguiente año, en el congreso de biólogos en el Laboratorio de Cold Spring Harbor, el Instituto Nacional de la Salud (NIH) quiso participar del proyecto al ser otro organismo público con mucha más experiencia biológica, si bien no tanta en la organización de proyectos de esta magnitud.

El debate público que suscitó la idea captó la atención de los responsables políticos, no solo porque el Proyecto Genoma Humano era un gran reto tecnocientífico, sino por las tecnologías de vanguardia que surgirían, así como porque el conocimiento obtenido aseguraría la superioridad tecnológica y comercial del país. Antes de dar luz verde a la iniciativa del PGH se necesitó por un lado el informe de 1988 de la Oficina de Evaluación Tecnológica del Congreso (OTA) y el del Consejo Nacional de Investigación (NRC). Ese año se inauguró HUGO (Organización del Genoma Humano) y James D. Watson fue nombrado alto cargo del proyecto. Sería reemplazado por Francis Collins en abril de 1993, en gran parte por su enemistad con Bernadine Healy que era su jefe por aquel entonces. Tras esto el nombre del Centro cambió a Instituto Nacional de Investigaciones del Genoma Humano (NHGRI).

En 1990 se inauguró definitivamente el Proyecto Genoma Humano calculándose quince años de trabajo. Sus objetivos principales en una primera etapa eran la elaboración de mapas genéticos y físicos de gran resolución, mientras se ponían a punto nuevas técnicas de secuenciación, para poder abordar todo el genoma. Se calculó que el Proyecto Genoma Humano estadounidense necesitaría unos 3000 millones de dólares y terminaría en 2005. En 1993 los fondos públicos aportaron 170 millones de dólares, mientras que la industria gastó aproximadamente 80 millones. Con el paso de los años, la inversión privada cobró relevancia y amenazó con adelantar a las financiaciones públicas.

Contribución de empresas privadas

En 1999 Craig Venter funda, con un financiamiento mixto, el Instituto para la Investigación Genética (TIGR) que se dio a conocer públicamente en 1995 con el descubrimiento de la secuencia nucleotídica del primer organismo completo publicado, la bacteria Haemophilus influenzae con cerca de 1740 genes (1.8 Mb). En mayo de 1998 surgió la primera empresa relacionada con el PGH llamada Celera Genomics. La investigación del proyecto se convirtió en una carrera frenética en todos los laboratorios relacionados con el tema, ya que se intentaba secuenciar trozos de cromosomas para rápidamente incorporar sus secuencias a las bases de datos y atribuirse la prioridad de pantera.

Resultados del proyecto

Archivo:Wellcome genome bookcase
La primera presentación impresa del genoma humano fue entregada en una serie de libros, desplegados en la Colección Wellcome, Londres.

El 6 de abril de 2000 se anunció públicamente la terminación del primer borrador del genoma humano secuenciado que localizaba a los genes dentro de los cromosomas. Los días 15 y 16 de febrero de 2001, las dos prestigiosas revistas científicas estadounidenses, Nature y Science, publicaron la secuenciación definitiva del Genoma Humano, con un 99,9 % de fiabilidad y con un año de antelación a la fecha presupuesta. Sucesivas secuenciaciones condujeron finalmente al anuncio del genoma esencialmente completo en abril de 2003, dos años antes de lo previsto. En mayo de 2006 se alcanzó otro hito en la culminación del proyecto al publicarse la secuencia del último cromosoma humano en la revista Nature.

Una extensión del Proyecto Genoma Humano es el del microbioma humano, que intenta caracterizar las comunidades microbianas encontradas en diversas localizaciones del cuerpo humano para determinar las posibles correlaciones entre los cambios de dicho microbioma y el estado de salud. Algunos autores consideran al microbioma humano el último órgano por investigar.

En junio de 2021 se dio a conocer que un consorcio internacional había secuenciado por primera vez el genoma completo de un ser humano. El libro de instrucciones de una persona tiene 3.055 millones de letras, según la nueva lectura, que incluye un 8 % del ADN que permanecía oculto por falta de tecnología.[1]

Objetivos Principales

Desde el principio de la investigación, se propuso desarrollar el PGH a través de dos vías independientes, pero relacionadas y ambas esenciales:

  • Secuenciación: se trataba de averiguar la posición de todos los nucleótidos del genoma (cada una de las cuatro posibles bases nitrogenadas típicas del ADN).
  • Cartografía o mapeo genético: consistía en localizar los genes en cada uno de los 23 pares de cromosomas del ser humano.

Identificación de los genes en el genoma humano

El genoma humano está compuesto por aproximadamente 30 000 genes, cifra bastante próxima a la mencionada en el borrador del proyecto, publicado en el año 2000, ocasión en la que los genes oscilaban entre 26 000 y 38 000. Otra peculiaridad del genoma humano es que la cifra de genes es solo dos o tres veces mayor que la encontrada en el genoma de Drosophila, y cualitativamente hablando, existen genes comunes a los de bacterias y que no han sido hallados en nuestros ancestros.

Determinación de la secuencia de bases nitrogenadas que forman el ADN humano

Los humanos poseen poco más de 3000 millones de bases nitrogenadas, similar al tamaño de genomas de otros vertebrados.

Mantenimiento a resguardo de la información creando bases de datos

En estos momentos son una realidad las bases de datos donde se almacena toda la información surgida del Proyecto Genoma Humano. Si accedemos a Internet podremos conocer libremente aspectos de alto interés en la comparación entre genomas de distintas especies de animales y plantas. Gracias al uso libre de este conocimiento es posible determinar la función de los genes, así como averiguar cómo las mutaciones influyen en la síntesis de proteínas.

Transferencia de tecnología relacionada con el tema al sector privado

Se ha producido importante corriente de liberación de derechos que anteriormente estaban en manos del Estado, en relación con la transferencia de tecnologías al sector privado. Esta medida ha suscitado aplausos y críticas. Por un lado se amplía el acceso libre a los datos del Proyecto con lo que muchas más personas pueden seguir estudiando este campo, pero por otro esto puede suponer el incremento de poder de ciertos sectores que a su vez, aumentaran su influencia en la sociedad.

Supervisión de los temas éticos, legales y sociales derivados del Proyecto

Para terminar, se puede afirmar que el objetivo relacionado con el estudio de la ética del PGH ha necesitado de grandes sumas de dinero estatales así como de un importante trabajo de laboratorios e investigadores.

Donantes de genoma

El PGH e IHGSC internacional (sector público) recogieron las muestras de muchos donantes diferentes, pero solo unas pocas de estas muestras fueron estudiadas después realmente. Así se garantizó que la identidad de los donantes estuviera salvaguardada de modo que nadie supiera qué ADN sería el secuenciado. También han sido utilizados clones de ADN de varias bibliotecas, la mayoría de las cuales fueron creadas por el Dr. J. Pieter de Jong. Se comunicó de manera informal, pero es bien conocido por la comunidad en general, que gran parte del ADN secuenciado provenía de un único donante anónimo de Buffalo, Nueva York, su nombre en clave era RP11. Los científicos encargados utilizaron principalmente los glóbulos blancos de dos hombres y dos mujeres elegidos aleatoriamente.

Ventajas

El trabajo sobre la interpretación de los datos del genoma se encuentra todavía en sus etapas iniciales. Se prevé que un conocimiento detallado del genoma humano ofrecerá nuevas vías para los avances de la medicina y la biotecnología. Por ejemplo, un número de empresas, como Myriad Genetics ha empezado a ofrecer formas sencillas de administrar las pruebas genéticas que pueden mostrar la predisposición a una variedad de enfermedades, incluyendo cáncer de mama, los trastornos de la hemostasia, la fibrosis quística, enfermedades hepáticas y muchas otras. Además, la etiología de los cánceres, la enfermedad de Alzheimer y otras áreas de interés clínico se consideran susceptibles de beneficiarse de la información sobre el genoma y, posiblemente, pueda a largo plazo conducir a avances significativos en su gestión.

Hay también muchos beneficios tangibles para los biólogos. Por ejemplo, un investigador de la investigación de un determinado tipo de cáncer puede haber reducido su búsqueda a un determinado gen. Al visitar la base de datos del genoma humano en la World Wide Web, este investigador puede examinar lo que otros científicos han escrito sobre este gen, incluyendo (potencialmente) la estructura tridimensional de su producto; su/s función/es; sus relaciones evolutivas con otros genes humanos, o genes de ratones, levaduras, moscas de la fruta; las posibles mutaciones perjudiciales; las interacciones con otros genes; los tejidos del cuerpo en el que este gen es activado; las enfermedades asociadas con este gen u otro tipo de datos. Además, la comprensión más profunda de los procesos de la enfermedad en el ámbito de la biología molecular puede determinar nuevos procedimientos terapéuticos. Dada la importancia del ADN en biología molecular y su papel central en la determinación de la operación fundamental de los procesos celulares, es probable que la ampliación de los conocimientos en este ámbito facilite los avances médicos en numerosas áreas de interés clínico que puede no haber sido posible por otros métodos.

El análisis de las similitudes entre las secuencias de ADN de diferentes organismos es también la apertura de nuevas vías en el estudio de la evolución. En muchos casos, las cuestiones de evolución ahora se pueden enmarcar en términos de biología molecular y, de hecho, muchos de los grandes hitos evolutivos (la aparición de los ribosomas y orgánulos, el desarrollo de planes de embriones con el cuerpo, el sistema inmune de vertebrados) pueden estar relacionados con el nivel molecular. Muchas de las preguntas acerca de las similitudes y diferencias entre los seres humanos y nuestros parientes más cercanos (los primates, y de hecho los otros mamíferos) se espera que sean iluminados por los datos de este proyecto.

El Proyecto Diversidad del Genoma Humano (PDGH), derivado de investigaciones dirigidas a la asignación del ADN humano - que varía entre los grupos étnicos - que se rumorea que ha sido detenido, realmente continúa y hasta la fecha ha arrojado nuevas conclusiones. En el futuro, el PGH podría exponer nuevos datos en la vigilancia de las enfermedades, el desarrollo humano y la antropología. El PGH podría desbloquear secretos y crear nuevas estrategias para combatir la vulnerabilidad de los grupos étnicos a ciertas enfermedades. También podría mostrar cómo las poblaciones humanas se han adaptado a estas vulnerabilidades.

Además, el PGH tiene una consecuencia muy importante, y es que se pueden conocer la base molecular de ciertas enfermedades hereditarias y que se puede realizar un diagnóstico de las mismas:

Conocer las bases moleculares de las enfermedades hereditarias

Una de las aplicaciones más directas de conocer la secuencia de genes que componen el genoma humano es que se puede conocer la base molecular de muchas enfermedades genéticas y se puede realizar un diagnóstico adecuado. Algunas de estas enfermedades son las siguientes:

  • Enfermedad de Gaucher: esta enfermedad es producida por una mutación recesiva en el gen que codifica la enzima glucocerebrosidasa, que se localiza en el cromosoma 1. Esta enzima se encarga de metabolizar los glucocerebrósidos (un tipo de lípidos). En los enfermos de Gaucher, estos lípidos no pueden ser descompuestos y se acumulan principalmente en el hígado, en el bazo y en la médula ósea. Los síntomas de la enfermedad de Gaucher incluyen fuertes dolores, fatiga, ictericia, daños óseos, anemia y muerte. Gracias al PGH se pudo realizar la primera terapia efectiva contra esta enfermedad, inyectándose la enzima sintetizada en escherichia coli en el torrente sanguíneo de los enfermos. Esto detiene el avance de los síntomas y en muchos casos los revierte.
  • Enfermedad de Alzheimer: Esta enfermedad es una enfermedad degenerativa que destruye el cerebro, haciendo que los enfermos pierdan la memoria y el juicio, y que finalmente impide que se puedan valer por sí solos. Actualmente, mediante resultados obtenidos con la resonancia magnética y tomografía por emisión de positrones de las proteínas beta amiloide y tau, los investigadores pueden detectar cambios cerebrales asociados a la fase preclínica (hasta 20 años antes de los primeros síntomas) de la enfermedad. El Alzheimer esporádico es el más común y de origen multifactorial, aunque el mayor factor de riesgo sea la edad, mientras que el Alzheimer de origen genético ronda en un 1 % de los casos. Gracias al PGH se han localizado marcadores para el Alzheimer de origen genético en los cromosomas 1, 14, 19 y 21.
  • Enfermedad de Huntington: Esta enfermedad es también una enfermedad degenerativa y conduce a un deterioro mental que termina en demencia. Normalmente comienza a aparecer entre los 30 y los 50 años y presenta síntomas tales como cambios en la personalidad y en el estado de ánimo, depresión y pérdida gradual del control sobre los movimientos voluntarios, causando espasmos primero y grandes movimientos al azar posteriormente. Esta enfermedad presenta una herencia autosómica dominante, es decir, si uno de los padres la posee, sus hijos tienen el 50 % de probabilidad de padecerla también. La Enfermedad de Huntington no se salta generaciones. Si no se hereda el gen, no se puede transmitir a la descendencia. Del mismo, modo, si se hereda el gen, inevitablemente se padecerá la enfermedad, más tarde o más temprano. En 1993 se consiguió aislar el gen que provoca esta enfermedad, localizado en el cromosoma 4, y en lo que se han ido desarrollando las investigaciones posteriores, ha sido fundamentalmente en conocer las razones que hacen que la Enfermedad de Huntingnton se manifieste de forma tardía, y muchas líneas de investigación están dirigidas a encontrar un tratamiento y una cura.
  • Síndrome de Marfan: Es una enfermedad congénita del tejido conectivo que afecta a numerosos órganos y sistemas, incluyendo el esqueleto, los pulmones, los ojos, el corazón y los vasos sanguíneos. Esta enfermedad se caracteriza por un crecimiento anormal de las extremidades (especialmente de los dedos), una dislocación parcial del cristalino (en el 50 % de los pacientes), anormalidades cardiovasculares (la arteria aorta suele ser más ancha y más frágil que en las personas normales) y otras deformaciones. El síndrome de Marfan es también una enfermedad autosómica dominante, por lo que los descendientes de personas afectadas poseen el 50 % de posibilidades de padecerla. La enfermedad está asociada al gen FBN1, localizado en el cromosoma 15. El FBN1 codifica una proteína llamada fibrilina, que es esencial para la formación de fibras elásticas del tejido conectivo. Sin el soporte estructural de las fibras elásticas, muchos tejidos presentan una debilidad que puede conducir los síntomas comentados anteriormente.

Diagnósticos de enfermedades posibles gracias al PGH

Estos son algunos ejemplos de enfermedades que se han podido diagnosticar gracias, de una u otra manera, al conocimiento de las secuencias genéticas tras la secuenciación del genoma por el Proyecto Genoma Humano. El diagnóstico de cierta enfermedad, gracias al PGH se puede realizar de manera presintomática y prenatal.

El conocimiento de la base molecular de las enfermedades permite realizar el diagnóstico presintomático y gracias a él tomar medidas preventivas, como alteraciones en el estilo de vida, evitar la exposición a factores de riesgo, realizar un seguimiento continuo del individuo o realizar intervenciones puntuales, para poder tratar la enfermedad aunque todavía no haya aparecido.

En cuanto al diagnóstico prenatal, este consiste en un conjunto de técnicas que sirven para conocer la adecuada formación y el correcto desarrollo del feto antes de su nacimiento, para poder conocer posibles malformaciones desde los primeros estadios de desarrollo del embrión. La técnica más común de diagnóstico prenatal es la amniocentesis, que consiste en el análisis del líquido amniótico que rodea al feto durante el embarazo. Las células desprendidas del feto y que flotan en dicho líquido sirven para obtener un recuento exacto de cromosomas y para detectar cualquier estructura cromosómica anormal.

Terapia génica, terapia farmacológica y medicina predictiva

Una vez que se conocen qué genes producen qué enfermedades, y las características para diagnosticar una enfermedad conociendo la secuencia de bases, es necesario realizar una terapia para acabar con esa enfermedad, ya que de ser de otra manera, el diagnóstico de una enfermedad no es más que una carga emocional que el paciente tiene que soportar de la mejor manera posible, conviviendo con la impotencia y la ansiedad que le puede suponer a un paciente el saber que en un determinado lapso de tiempo es posible que padezca una enfermedad. Una consecuencia, por tanto, del PGH es desarrollar terapias contra las enfermedades que ha diagnosticado. Se conocen la terapia génica, la terapia farmacológica y la medicina predictiva:

  • La terapia génica es una consecuencia directa del PGH y supone la probabilidad de curar las enfermedades hereditarias cartografiadas por este, insertando copias funcionales de genes defectivos o ausentes en el genoma de un individuo para tratar dicha enfermedad. Las técnicas actuales de terapia génica no pueden asegurar que el gen se inserte en un lugar apropiado del genoma, existe la posibilidad de que interfiera con el funcionamiento de un gen importante o incluso que active un oncogén, provocando así un cáncer en el paciente. Sin embargo, estas técnicas solo se utilizan con pacientes que ya corren peligro inminente de muerte, por lo que la posibilidad de contraer un cáncer en un futuro incierto no constituye un impedimento muy grave para aceptar el tratamiento.
El primer caso que se conoce de terapia génica tuvo lugar en los NIH (National Institutes of Health. En español: Institutos Nacionales de la Salud), en Bethesda, Maryland. Consistió en la inoculación de glóbulos blancos genéticamente modificados a una niña que padecía inmunodeficiencia severa combinada (deficiencia de adenosina-desaminasa o ADA). Esta enfermedad es una enfermedad rara, y la carencia de ADA se puede tratar con trasplantes de médula ósea. Sin embargo, el trasplante solo es posible si el paciente tiene un hermano que no esté afectado por la enfermedad y que sea compatible. Otra posibilidad es inyectar la proteína directamente, pero las inyecciones no llegan inmediatamente al lugar necesario y constituyen un mal sucedáneo de los sutiles mecanismos que controlan y dirigen la producción de ADA en circunstancias normales. La operación consistió en la extracción de linfocitos T de la paciente, su modificación genética y su reimplantación. Con esto las células comenzaron a producir la ADA.
Cuando se realizó esta primera intervención, los doctores de los NIH estudiaron las implicaciones éticas que podía tener esta operación y llegaron a la conclusión de que no existía diferencia moral con respecto a cualquier tipo de trasplante de tejidos o de órganos. Esta comparación residía en que los genes trasplantados solo afectaban a las células somáticas del individuo, de modo que solo afectaban a la niña misma y que no lo harían por tanto a su descendencia. Podemos diferenciar entonces dos tipos de terapia génica, en línea somática y en línea germinal. Esta última consiste en introducir genes nuevos, biológicamente funcionales, en células germinales (óvulos y/o espermatozoides) antes de que se produzca la fecundación. El embrión que surge tras la fecundación partirá de una única célula modificada genéticamente, por lo que todas sus células posteriores presentarán la misma modificación, incluyendo las futuras células germinales que producirá, pudiendo transmitir sus características a las generaciones futuras.
Todos los estudios nacionales han rechazado la terapia en línea germinal, de momento, ya que opinan que todavía no se dispone de los suficientes conocimientos para evaluar los riesgos que supone este tipo de terapia y que es necesario realizar un estricto examen ético antes de comenzar a aplicarla, si esto se acabara produciendo.
  • La terapia farmacológica se ve también facilitada por el PGH ya que este permite encontrar alteraciones en la secuencia del ADN de genes específicos y esto conlleva a que se realice el tratamiento con medicamentos de una manera dirigida, neutralizando las alteraciones y modificando favorablemente el curso de la enfermedad de forma más efectiva que los tratamientos de la medicina actual, que están generalmente dirigidos a aliviar los síntomas.
El PGH permite además, en relación con la farmacología, modificar los medicamentos para que se ajusten a las características genéticas del paciente y así poder metabolizar el fármaco de la mejor manera posible, lo que en consecuencia, elimina o minimiza los efectos secundarios indeseables del mismo. Gracias al PGH el médico tendrá un perfil genético del paciente antes de iniciar el tratamiento.
  • La medicina predictiva permite diagnosticar enfermedades, gracias a los conocimientos del genoma, que aún no se han desarrollado en el paciente. Se distinguen dos tipos de enfermedades que se pueden diagnosticar mediante la medicina predictiva. Las monogénicas, que se pueden identificar fácilmente ya que se conocen perfectamente las leyes deterministas que las regulan; y las poligénicas, para cuyo buen estudio es necesario realizar sondeos poblacionales. Por ejemplo se pueden encontrar los genes que regulan el nivel de colesterol en la sangre (unos veinte). Determinadas combinaciones de variedades de estos genes sitúan al sujeto en un grupo de riesgo de padecer enfermedades tempranas de las arterias coronarias y ataques cardíacos. Si además el sujeto lleva una dieta rica en grasas animales y una vida sedentaria (también influyen por tanto agentes externos como puede ser el modo de vida y la alimentación), es muy posible que muera de infarto antes de los cincuenta años. La meta es conocer exactamente qué combinaciones de genes son especialmente peligrosas y en esto tiene un papel muy importante el Proyecto Genoma Humano. La medicina predictiva también causa una importante controversia en la sociedad ya que los estudios poblaciones que se realizan para estudiar las enfermedades poligénicas se pueden utilizar para discriminar a ciertas personas o grupos, lo que se llamaría discriminación genética. Este tema se tratará en el apartado Aspectos Éticos.

Proyecto Genoma Humano

El Proyecto Genoma Humano permite obtener información de la estructura genética de un individuo, pero en principio solo se queda ahí. Esa información estructural permite conocer la base molecular de muchas enfermedades y, sobre esa base, realizar el mejor diagnóstico posible. Pero, desde un punto de vista biológico, el PGH es la antesala de un proyecto mucho más interesante y dinámico, y es el proyecto proteoma humano. Gracias a la proteómica se puede conocer cómo la secuencia genética se transforma en una proteína que va a desarrollar cierta función.

Cifras y datos

Archivo:Gene
Este diagrama esquemático muestra un gen en relación a su estructura física (doble hélice de ADN) y a un cromosoma (derecha). Los intrones son regiones frecuentemente encontradas en los genes de eucariotas, que se transcriben, pero son eliminadas en el procesamiento del ARN (ayuste) para producir un ARNm formado solo por exones, encargados de traducir una proteína. Este diagrama es en exceso simplificado ya que muestra un gen compuesto por unos 40 pares de bases cuando en realidad su tamaño medio es de 20 000-30 000 pares de bases).
  • El Consorcio Internacional, integrado por 20 grupos de diferentes países y por otro lado la empresa privada Celera, hicieron público, el 12 de febrero de 2001, el mapa provisional del genoma humano (GH) que aporta una extraordinaria información acerca de las bases genéticas del ser humano.
  • El Consorcio Internacional ha calculado que el genoma humano contiene 20 500 genes.
  • De los 300 000 clones de partida fueron válidos 30 000 clones que representan un total de 3200 megabases. Estos resultados alcanzados en octubre del 2000, representan el 90 % del genoma. La secuencia obtenida es de enorme trascendencia y son muchos y variados los puntos de interés pudiendo destacarse algunos datos:
  • El humano tiene solo el doble de genes que la mosca del vinagre, un tercio más que el gusano común y apenas 5000 genes más que la planta Arabidopsis.
  • 3200 millones de pares de bases forman genes, repartidos entre los 23 pares de cromosomas. Los cromosomas más densos (con más genes codificadores de proteínas) son el 17, 19 y el 22. Los cromosomas X, Y, 4, 18 y 13 son los más áridos.
  • El equipo de Celera Genomics utilizó para secuenciar el genoma humano muestras de ADN de tres mujeres y dos hombres (un afroamericano, un chino, un asiático, un hispanomexicano y un caucasiano). El equipo de Celera utilizó ADN perteneciente a doce personas. Cada persona comparte un 99,99 por ciento del mismo código genético con el resto de los seres humanos. Solo 1250 nucleótidos separan una persona de otra.
  • Hasta ahora se han encontrado 223 genes humanos que resultan similares a los genes bacterianos.
  • Solo un 5 % del genoma codifica proteínas. El 25 % del genoma humano está casi desierto, existiendo largos espacios libres entre un gen y otro.
  • Se calcula que existen entre 250 000 y 300 000 proteínas distintas. Por tanto cada gen podría estar implicado por término medio en la síntesis de unas diez proteínas.
  • Algo más del 35% del genoma contiene secuencias repetidas. Lo que se conoce como ADN basura.
  • Se han identificado un número muy elevado de pequeñas variaciones en los genes que se conocen como polimorfismos nucleótidos únicos, SNP de su acrónimo inglés. Celera ha encontrado 2,1 millones de SNP en el genoma y el Consorcio 1,4 millones. La mayoría de estos polimorfismos no tienen un efecto clínico concreto pero de ellos depende, por ejemplo, el que una persona sea sensible o no a un determinado fármaco y la predisposición a sufrir una determinada enfermedad.

Véase también

Kids robot.svg En inglés: Human genome Facts for Kids

kids search engine
Proyecto Genoma Humano para Niños. Enciclopedia Kiddle.