robot de la enciclopedia para niños

Proyección de Mercator para niños

Enciclopedia para niños
Archivo:Mercator projection Square
Mapa en proyección Mercator.
Archivo:Mercator 1569
Mapa de Mercator de 1569
Archivo:Orthodromic vs loxodromic
Comparación, en una proyección Mercator del Atlántico Norte, del rumbo loxodromia (según puntos cardinales, línea recta en el mapa) frente a la geodésica (según un círculo máximo terrestre o distancia más corta, curva en el mapa)

La proyección de Mercator es un tipo de proyección cartográfica ideada por Gerardus Mercator en 1569 para elaborar mapas de la superficie terrestre. Ha sido muy utilizada desde el siglo XVIII para cartas náuticas porque permitía trazar las rutas de rumbo constante o loxodrómicas como líneas rectas e ininterrumpidas, a diferencia de otras proyecciones más precisas.

Es un tipo de proyección cilíndrica tangente al ecuador. Como tal, deforma las distancias entre los meridianos (en la tierra son como "gajos" de polo a polo) en líneas paralelas, aumentando su ancho real cada vez más a medida que se acerca a los polos.

Esta proyección tampoco respeta las formas reales entre los paralelos, la amplía en largo, cada vez más a medida que se acerca a los polos, distorsionando las áreas cercanas a los polos aún más. Nótandose la diferencia con la proyección cilíndrica equidistante, que sí respeta distancias entre paralelos y tiene solo las deformaciones meridionales de la proyección.

Matemática de la proyección

Archivo:Gudermannian
Relación entre la posición vertical en el mapa (horizontal en el gráfico) y latitud (vertical en el gráfico)

Las siguientes ecuaciones determinan las coordenadas (x,y) de un punto en el mapa en proyección Mercator a partir de su latitud φ y longitud λ (siendo λ0 la longitud central del mapa):

\begin{align}
x &= \lambda - \lambda_{0} \\
y &= \ln{\left[ \tan{\left( \frac{\pi}{4} + \frac{\phi}{2} \right)} \right]} \\
&= \frac{1}{2} \ln{\left( \frac{1 + \mathrm{sen} \, \phi}{1 - \mathrm{sen} \, \phi} \right)} \\
&= \mathrm{senh}^{-1}{(\tan{\phi})} \\
&= \tanh^{-1}{(\mathrm{sen} \, \phi)} \\
&= \ln{(\tan{\phi} + \sec{\phi} )}
\end{align}

Esta es la inversa de la función de Gudermann:


\begin{align}
\phi    & = 2\tan^{-1}(e^y) - \frac{\pi}{2} \\
        & = \tan^{-1}(\sinh(y)) \\
\lambda & = x + \lambda_0 \\
\end{align}

La escala es proporcional a la secante de la latitud φ, haciéndose extremadamente grande cerca de los polos. En el polo mismo φ = 90° o –90°. Como se deduce de las fórmulas, el valor para y en los polos es +/– infinito.

Derivación de la proyección

Asumiendo que la Tierra tiene forma esférica (en realidad se parece más a un elipsoide levemente achatado en los polos y con otras leves deformaciones, pero para mapas de pequeña escala la diferencia es irrelevante), se busca transformar del sistema longitud-latitud (λ,φ) al sistema cartesiano (x,y) que es "un cilindro tangente al ecuador" (p.ej. x=λ) y conforme, tal que:

Archivo:Usgs map mercator
La proyección Mercator es una proyección cilíndrica

\frac{\partial x}{\partial \lambda} = \cos(\phi) \frac{\partial y}{\partial \phi}

\frac{\partial y}{\partial \lambda} = -\cos(\phi) \frac{\partial x}{\partial \phi}

De x = λ se tiene:

\frac{\partial x}{\partial \lambda} = 1

\frac{\partial x}{\partial \phi} = 0

resultando

1 = \cos(\phi) \frac{\partial y}{\partial \phi}

0 = \frac{\partial y}{\partial \lambda}

Dado que y es función solo de φ con y'=\sec\phi de la cual una tabla de integrales nos da

y = \ln[ \sec(\phi) + \tan(\phi) ] + C\,.

Es conveniente asignar φ = 0 a y = 0, con lo cual la constante C se anula, C = 0.

Uso actual en la web

Las aplicaciones web de cartografía, como Google Maps, OpenStreetMap o Bing Maps, utilizan actualmente la proyección de Mercator. Concretamente emplean una variante que supone que la superficie del planeta es esférica en vez de la forma exacta, elipsoidal, para simplificar los cálculos. Los desarrolladores de Bing Maps han justificado la elección de la proyección de Mercator por dos motivos. En primer lugar, como en toda proyección cilíndrica, en cualquier punto del planeta la dirección norte-sur aparece siempre vertical y la este-oeste horizontal. En segundo lugar, por ser una proyección conforme, las formas de los edificios no se distorsionan, evitando que un edificio cuadrado pueda aparecer rectangular como ocurre en otras proyecciones. Estas dos virtudes han compensado, a ojos de los autores de estas aplicaciones, las significativas distorsiones de escala que introduce la proyección de Mercator, sobre todo en las regiones cerca de los polos.

Google Satellite Maps, por otro lado, usó una Proyección cilíndrica equidistante hasta julio de 2005.

En los mapas en Google Maps la máxima latitud representada es de +/– 85.0511287798066 grados.

Historia

Existe cierta controversia sobre los orígenes de la proyección de Mercator. El polímata alemán Erhard Etzlaub grabó "mapas de brújula" en miniatura (unos 10×8 cm) de Europa y partes de África que abarcaban las latitudes 0°-67° para permitir el ajuste de sus relojes de sol portátiles de bolsillo. La proyección encontrada en estos mapas, que data de 1511, fue declarada por Snyder en 1987 para ser la misma proyección que la de Mercator. Sin embargo, dada la geometría de un reloj de sol, estos mapas bien podrían haberse basado en la similar proyección cilíndrica central, un caso límite de la proyección gnomónica, que es la base de un reloj de sol. Snyder modifica su valoración a "una proyección similar" en 1994.

Joseph Needham, historiador de China, escribió que los chinos desarrollaron la proyección Mercator cientos de años antes que Mercator, utilizándola en las cartas estelares durante la dinastía Song. Sin embargo, se trataba de un simple, y común, caso de error de identificación. La proyección en uso era la proyección equirectangular.

El matemático y cosmógrafo portugués Pedro Nunes describió por primera vez el principio matemático del loxodrómico y su uso en la navegación marina. En 1537, propuso construir un atlas náutico compuesto por varias hojas a gran escala en la proyección cilíndrica equidistante como forma de minimizar la distorsión de las direcciones. Si estas láminas se ponían a la misma escala y se ensamblaban, se aproximarían a la proyección de Mercator.

En 1569, Gerhard Kremer, conocido por su nombre comercial Gerardus Mercator, anunció una nueva proyección al publicar un gran mapa planisférico que medía 202 por 124 y que estaba impreso en dieciocho hojas separadas. Mercator tituló el mapa Nova et Aucta Orbis Terrae Descriptio ad Usum Navigantium Emendata: "Una nueva y aumentada descripción de la Tierra corregida para el uso de los navegantes". Este título, junto con una elaborada explicación sobre el uso de la proyección que aparece como una sección de texto en el mapa, muestra que Mercator entendía exactamente lo que había logrado y que pretendía que la proyección ayudara a la navegación. Mercator nunca explicó el método de construcción ni cómo llegó a él. A lo largo de los años se han barajado varias hipótesis, pero en cualquier caso, la amistad de Mercator con Pedro Nunes y su acceso a las tablas loxodrómicas creadas por Nunes probablemente contribuyeron a sus esfuerzos.

El matemático inglés Edward Wright publicó las primeras tablas precisas para construir la proyección en 1599 y, con más detalle, en 1610, titulando su tratado "Certaine Errors in Navigation". La primera formulación matemática fue publicada hacia 1645 por un matemático llamado Henry Bond (c. 1600-1678). Sin embargo, las matemáticas involucradas fueron desarrolladas pero nunca publicadas por el matemático Thomas Harriot a partir de alrededor de 1589.

El desarrollo de la proyección Mercator representó un gran avance en la cartografía náutica del siglo XVI. Sin embargo, se adelantó mucho a su tiempo, ya que las antiguas técnicas de navegación y topografía no eran compatibles con su uso en la navegación. Dos problemas principales impidieron su aplicación inmediata: la imposibilidad de determinar la longitud en el mar con la precisión adecuada y el hecho de que en la navegación se utilizara las direcciones magnéticas, en lugar de direcciones geográficas (declinación magnética). Sólo a mediados del siglo XVIII, tras la invención del cronómetro marino y el conocimiento de la distribución espacial de la declinación magnética, la proyección de Mercator pudo ser plenamente adoptada por los navegantes.

A pesar de esas limitaciones en la búsqueda de la posición, la proyección de Mercator puede encontrarse en muchos mapas del mundo en los siglos siguientes a la primera publicación de Mercator. Sin embargo, no empezó a dominar los mapas del mundo hasta el siglo XIX, cuando el problema de la determinación de la posición se había resuelto en gran medida. Una vez que Mercator se convirtió en la proyección habitual para los mapas comerciales y educativos, fue objeto de críticas persistentes por parte de los cartógrafos por su representación desequilibrada de las masas terrestres y su incapacidad para mostrar de forma útil las regiones polares.

Véase también

Kids robot.svg En inglés: Mercator projection Facts for Kids

kids search engine
Proyección de Mercator para Niños. Enciclopedia Kiddle.