Intervalo (música) para niños
Intervalo es la distancia (en términos de altura) entre dos notas musicales o entre dos sonidos. En general, suelen medirse según las notas de una escala incluyendo los extremos (por ejemplo, entre RE y FA, si se cuenta de manera ascendente, hay una tercera), o bien por la diferencia de tonos y semitonos, o solamente de semitonos. Por ejemplo, una quinta justa es un intervalo de 7 semitonos que se miden en un teclado.
Contenido
Tipos de intervalos
Los intervalos tonales (a veces llamados consonancias perfectas) pueden ser justos; los modales (a veces llamados consonancias imperfectas y disonancias) pueden ser mayores o menores. Además todos los tipos de intervalos pueden ser aumentados o disminuidos (excepto la segunda, que no puede ser disminuida).
Se denomina armónico al intervalo cuyos sonidos suenan simultáneamente y melódico a aquel cuyos sonidos suenan sucesivamente.
Los intervalos melódicos pueden ser, además, ascendentes o descendentes.
Se consideran simples los intervalos no mayores que una octava y compuestos a los que la exceden. Los intervalos compuestos son análogos a los intervalos simples correspondientes. Así, una novena es una segunda a la octava y puede ser mayor o menor; una duodécima es análoga a una quinta y puede ser justa,aumentada o disminuida.
Se llaman complementarios los intervalos que, sumados, conforman una octava: una cuarta y una quinta son complementarias. Nótese que la suma de los cuatro grados de la cuarta y los cinco grados de la quinta se resuelve en ocho grados, no nueve, porque el cuarto grado de la cuarta es a la vez el primer grado de la quinta.
Denominación de los intervalos simples
Nombre del intervalo/Grados | Distancia en tonos y semitonos | Como suena en el sistema temperado |
---|---|---|
Unísono | Mismo sonido | |
Segunda menor | 1 semitono | |
Segunda mayor o tercera disminuida | 1 tono | |
Tercera menor o segunda aumentada | 1 1/2 tonos | |
Tercera mayor o cuarta disminuida | 2 tonos | |
Cuarta justa o tercera aumentada | 2 1/2 tonos | |
Cuarta aumentada o quinta disminuida (llamada tritono) | 3 tonos | |
Quinta justa o sexta disminuida | 3 1/2 tonos | |
Sexta menor o quinta aumentada | 4 tonos | |
Sexta mayor o séptima disminuida | 4 1/2 tonos | |
Séptima menor o sexta aumentada | 5 tonos | |
Séptima mayor | 5 1/2 tonos | |
Octava justa | 6 tonos |
Con la segunda nota en la siguiente octava y manteniendo la fundamental se generan los intervalos de novena, que equivale con una octava de diferencia al de segunda, el de undécima, que equivale al de cuarta, el de treceava, que equivale al de sexta, etc.
EJEMPLO
2m desde C = Db
4J desde A = D
7M desde F = E
Intervalos formados por los mismos sonidos
Puede ocurrir que dos intervalos formados por dos parejas iguales de sonidos tengan distinto nombre dependiendo de su función y del contexto musical en el que se encuentren.
Intervalo | 1/2 | 1 | 1-1/2 | 2 | 2-1/2 | 3 | 3-1/2 | 4 | 4-1/2 | 5 | 5-1/2 | 6 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2ª | 2m | 2M | 2A | |||||||||
3ª | 3d | 3m | 3M | 3A | ||||||||
4ª | 4d | 4J | 4A | |||||||||
5ª | 5d | 5J | 5A | |||||||||
6ª | 6d | 6m | 6M | 6A | ||||||||
7ª | 7d | 7m | 7M | 7A | ||||||||
8ª | 8d | 8J |
- Horizontalmente se indica la distancia entre los sonidos.
- Verticalmente se indican los intervalos.
Historia
Los primeros trabajos teóricos conocidos son los de Aristóxeno de Tarento, quien se basó en un método tanto empírico como matemático, a diferencia de las especulaciones filosóficas y matemáticas de Pitágoras.
Antiguamente se empleaba para su enseñanza un instrumento llamado monocordio. El cálculo matemático de las frecuencias de los sonidos e intervalos musicales fue estudiado en el siglo XVI por Simon Stevin mediante funciones exponenciales. Durante el siglo XVII, los investigadores Francesco Cavalieri y Juan Caramuel aplicaron el cálculo logarítmico.
En el siglo XIX, Hermann Helmholtz construyó los resonadores que hoy llevan su nombre, posteriormente utilizados para demostrar que todos los sonidos son por naturaleza complejos y consisten en una serie de sonidos concomitantes o armónicos naturales en intervalos que son iguales a los demostrados por el monocordio.
Consonancia y disonancia
La calificación de intervalos como consonantes o disonantes ha variado enormemente a lo largo de los siglos, así como la definición de lo consonante o disonante en sí.
Por ejemplo, durante la edad media la autoridad adjudicada a Pitágoras llevó a los especuladores a considerar a la cuarta justa como la consonancia perfecta y a utilizarla para la composición de organa. Durante la misma época, especulaciones de carácter teológico llevaron a considerar a la cuarta aumentada, llamada "tritono", como diabólica (tritonus diabolus in musica est).
La armonía tradicional desde el siglo XVII considera disonantes los intervalos armónicos de primera aumentada —semitono cromático—, segunda mayor o menor, cuarta aumentada, quinta disminuida o aumentada, séptima mayor o menor y octava disminuida o aumentada. Una posible consideración más detallada es la siguiente:
-
- Consonancias perfectas: los intervalos de 4ª, 5ª y 8ª cuando son justas.
- Consonancias imperfectas: los intervalos de 3ª y 6ª cuando son mayores o menores.
- Disonancias absolutas: los intervalos de 2ª y 7ª mayores y menores.
- Disonancias condicionales: todos los intervalos aumentados y disminuidos, excepto la 4ª aumentada y la 5ª disminuida.
- Semiconsonancias: la 4ª aumentada y la 5ª disminuida.
Además, en el contexto de la armonía tradicional, el intervalo melódico de cuarta aumentada es considerado disonante.
Frecuencias
La diferencia de la frecuencia entre las dos notas de un intervalo se puede medir mediante la relación entre ambas frecuencias. En algunas afinaciones se utilizan ciertos intervalos justos, es decir que corresponden a fracciones simples, por ejemplo 2:1 (octava), 3:2 (quinta justa), 4:3 (cuarta justa), 5:3 (sexta mayor), 5:4 (tercera mayor), 6:5 (tercera menor) y 8:5 (sexta menor).
Intervalos armónicos o melódicos
Un intervalo se puede producir tocando ambas notas al mismo tiempo (intervalo armónico), o una después de otra (intervalo melódico). En este último caso se puede diferenciar la dirección del sonido entre ascendente (cuando la segunda nota es más aguda que la primera) y descendente (cuando la segunda nota es más grave que la primera).
Inversión
Un intervalo puede ser invertido, al subir la nota inferior una octava o bajando la nota superior una octava, aunque es menos usual hablar de las inversiones de unísonos u octavas. Por ejemplo, la cuarta entre un Do grave y un Fa más agudo puede ser invertida para hacer una quinta, con un Fa grave y un Do más agudo. He aquí formas de identificar las inversiones de intervalos:
- Para intervalos diatónicos hay dos reglas para todos los intervalos simples:
- El número de cualquier intervalo y el número de su inversión siempre suman nueve (cuarta + quinta = nueve, en el ejemplo reciente).
- La inversión de un intervalo mayor es uno menor (y viceversa); la inversión de un intervalo justo es otro justo; la inversión de un intervalo aumentado es un disminuido (y viceversa); y la inversión de un intervalo doble aumentado es uno doble disminuido (y viceversa).
- Un ejemplo completo: Mi♭ debajo y Do por encima hacen una sexta mayor. Por las dos reglas anteriores, Do natural debajo y Mi Bemol por encima deben hacer una tercera menor.
- Para intervalos identificados por razón, la inversión es determinada revirtiendo la razón y multiplicando por 2. Por ejemplo, la inversión de una razón 5:4 es una razón 8:5.
- Para intervalos identificados por entero pueden simplemente ser restados de 12. Sin embargo no pueden ser invertidos.
Véase también
En inglés: Interval (music) Facts for Kids
- Acústica musical
- Afinación pitagórica
- Acordes
- Escalas