robot de la enciclopedia para niños

Intervalo (música) para niños

Enciclopedia para niños
Archivo:5 cz
Intervalo melódico de quinta justa ascendente a partir de 'do'
Recibe el nombre de quinta porque hay una distancia de cinco grados entre las notas que lo forman (do y sol)
Recibe el apelativo de justa porque hay una distancia de tres tonos y un semitono entre los sonidos que lo forman.

Intervalo es la distancia (en términos de altura) entre dos notas musicales o entre dos sonidos. En general, suelen medirse según las notas de una escala incluyendo los extremos (por ejemplo, entre RE y FA, si se cuenta de manera ascendente, hay una tercera), o bien por la diferencia de tonos y semitonos, o solamente de semitonos. Por ejemplo, una quinta justa es un intervalo de 7 semitonos que se miden en un teclado.

Tipos de intervalos

Archivo:Intervalos numero
Intervalos simples.La teoría musical considera tonales los intervalos de primera —unísono—, cuarta, quinta y octava y modales los de segunda, tercera, sexta y séptima.

Los intervalos tonales (a veces llamados consonancias perfectas) pueden ser justos; los modales (a veces llamados consonancias imperfectas y disonancias) pueden ser mayores o menores. Además todos los tipos de intervalos pueden ser aumentados o disminuidos (excepto la segunda, que no puede ser disminuida).

Se denomina armónico al intervalo cuyos sonidos suenan simultáneamente y melódico a aquel cuyos sonidos suenan sucesivamente.

Los intervalos melódicos pueden ser, además, ascendentes o descendentes.

Se consideran simples los intervalos no mayores que una octava y compuestos a los que la exceden. Los intervalos compuestos son análogos a los intervalos simples correspondientes. Así, una novena es una segunda a la octava y puede ser mayor o menor; una duodécima es análoga a una quinta y puede ser justa,aumentada o disminuida.

Se llaman complementarios los intervalos que, sumados, conforman una octava: una cuarta y una quinta son complementarias. Nótese que la suma de los cuatro grados de la cuarta y los cinco grados de la quinta se resuelve en ocho grados, no nueve, porque el cuarto grado de la cuarta es a la vez el primer grado de la quinta.

Denominación de los intervalos simples

Nombre del intervalo/Grados Distancia en tonos y semitonos Como suena en el sistema temperado
Unísono Mismo sonido
Segunda menor 1 semitono
Segunda mayor o tercera disminuida 1 tono
Tercera menor o segunda aumentada 1 1/2 tonos
Tercera mayor o cuarta disminuida 2 tonos
Cuarta justa o tercera aumentada 2 1/2 tonos
Cuarta aumentada o quinta disminuida (llamada tritono) 3 tonos
Quinta justa o sexta disminuida 3 1/2 tonos
Sexta menor o quinta aumentada 4 tonos
Sexta mayor o séptima disminuida 4 1/2 tonos
Séptima menor o sexta aumentada 5 tonos
Séptima mayor 5 1/2 tonos
Octava justa 6 tonos
Archivo:Intervals
Intervalos armónicos, mostrados sobre el pentagrama a partir de la nota do. Significado de la nomenclatura utilizada y distancia de cada intervalo en tonos y semitonos:
U = unísono (dos notas iguales)
m2 = de segunda menor (1st)
M2 = de segunda mayor (1T)
m3 = de tercera menor (1T 1st)
M3 = de tercera mayor (2T)
P4 = de cuarta justa o perfecta (2T 1st)
TT = de cuarta aumentada o tritono (2T 2st)
P5 = de quinta justa o perfecta (3T 1st)
m6 = de sexta menor (3T 2st)
M6 = de sexta mayor (4T 1st)
m7 = de séptima menor (4T 2st)
M7 = de séptima mayor (5T 1st)
P8 = de octava justa o perfecta (5T 2st)
Con la segunda nota en la siguiente octava y manteniendo la fundamental se generan los intervalos de novena, que equivale con una octava de diferencia al de segunda, el de undécima, que equivale al de cuarta, el de treceava, que equivale al de sexta, etc.

Con la segunda nota en la siguiente octava y manteniendo la fundamental se generan los intervalos de novena, que equivale con una octava de diferencia al de segunda, el de undécima, que equivale al de cuarta, el de treceava, que equivale al de sexta, etc.

EJEMPLO

2m desde C = Db

4J desde A = D

7M desde F = E

Intervalos formados por los mismos sonidos

Puede ocurrir que dos intervalos formados por dos parejas iguales de sonidos tengan distinto nombre dependiendo de su función y del contexto musical en el que se encuentren.

Distancia en tonos
Intervalo 1/2 1 1-1/2 2 2-1/2 3 3-1/2 4 4-1/2 5 5-1/2 6
2m 2M 2A
3d 3m 3M 3A
4d 4J 4A
5d 5J 5A
6d 6m 6M 6A
7d 7m 7M 7A
8d 8J
  • Horizontalmente se indica la distancia entre los sonidos.
  • Verticalmente se indican los intervalos.

Historia

Los primeros trabajos teóricos conocidos son los de Aristóxeno de Tarento, quien se basó en un método tanto empírico como matemático, a diferencia de las especulaciones filosóficas y matemáticas de Pitágoras.

Antiguamente se empleaba para su enseñanza un instrumento llamado monocordio. El cálculo matemático de las frecuencias de los sonidos e intervalos musicales fue estudiado en el siglo XVI por Simon Stevin mediante funciones exponenciales. Durante el siglo XVII, los investigadores Francesco Cavalieri y Juan Caramuel aplicaron el cálculo logarítmico.

En el siglo XIX, Hermann Helmholtz construyó los resonadores que hoy llevan su nombre, posteriormente utilizados para demostrar que todos los sonidos son por naturaleza complejos y consisten en una serie de sonidos concomitantes o armónicos naturales en intervalos que son iguales a los demostrados por el monocordio.

Consonancia y disonancia

La calificación de intervalos como consonantes o disonantes ha variado enormemente a lo largo de los siglos, así como la definición de lo consonante o disonante en sí.

Por ejemplo, durante la edad media la autoridad adjudicada a Pitágoras llevó a los especuladores a considerar a la cuarta justa como la consonancia perfecta y a utilizarla para la composición de organa. Durante la misma época, especulaciones de carácter teológico llevaron a considerar a la cuarta aumentada, llamada "tritono", como diabólica (tritonus diabolus in musica est).

La armonía tradicional desde el siglo XVII considera disonantes los intervalos armónicos de primera aumentada —semitono cromático—, segunda mayor o menor, cuarta aumentada, quinta disminuida o aumentada, séptima mayor o menor y octava disminuida o aumentada. Una posible consideración más detallada es la siguiente:

  • Consonancias perfectas: los intervalos de 4ª, 5ª y 8ª cuando son justas.
  • Consonancias imperfectas: los intervalos de 3ª y 6ª cuando son mayores o menores.
  • Disonancias absolutas: los intervalos de 2ª y 7ª mayores y menores.
  • Disonancias condicionales: todos los intervalos aumentados y disminuidos, excepto la 4ª aumentada y la 5ª disminuida.
  • Semiconsonancias: la 4ª aumentada y la 5ª disminuida.

Además, en el contexto de la armonía tradicional, el intervalo melódico de cuarta aumentada es considerado disonante.

Frecuencias

La diferencia de la frecuencia entre las dos notas de un intervalo se puede medir mediante la relación entre ambas frecuencias. En algunas afinaciones se utilizan ciertos intervalos justos, es decir que corresponden a fracciones simples, por ejemplo 2:1 (octava), 3:2 (quinta justa), 4:3 (cuarta justa), 5:3 (sexta mayor), 5:4 (tercera mayor), 6:5 (tercera menor) y 8:5 (sexta menor).

Intervalos armónicos o melódicos

Un intervalo se puede producir tocando ambas notas al mismo tiempo (intervalo armónico), o una después de otra (intervalo melódico). En este último caso se puede diferenciar la dirección del sonido entre ascendente (cuando la segunda nota es más aguda que la primera) y descendente (cuando la segunda nota es más grave que la primera).

Inversión

Un intervalo puede ser invertido, al subir la nota inferior una octava o bajando la nota superior una octava, aunque es menos usual hablar de las inversiones de unísonos u octavas. Por ejemplo, la cuarta entre un Do grave y un Fa más agudo puede ser invertida para hacer una quinta, con un Fa grave y un Do más agudo. He aquí formas de identificar las inversiones de intervalos:

  • Para intervalos diatónicos hay dos reglas para todos los intervalos simples:
    • El número de cualquier intervalo y el número de su inversión siempre suman nueve (cuarta + quinta = nueve, en el ejemplo reciente).
    • La inversión de un intervalo mayor es uno menor (y viceversa); la inversión de un intervalo justo es otro justo; la inversión de un intervalo aumentado es un disminuido (y viceversa); y la inversión de un intervalo doble aumentado es uno doble disminuido (y viceversa).
Un ejemplo completo: Mi♭ debajo y Do por encima hacen una sexta mayor. Por las dos reglas anteriores, Do natural debajo y Mi Bemol por encima deben hacer una tercera menor.
  • Para intervalos identificados por razón, la inversión es determinada revirtiendo la razón y multiplicando por 2. Por ejemplo, la inversión de una razón 5:4 es una razón 8:5.
  • Para intervalos identificados por entero pueden simplemente ser restados de 12. Sin embargo no pueden ser invertidos.

Véase también

Kids robot.svg En inglés: Interval (music) Facts for Kids

kids search engine
Intervalo (música) para Niños. Enciclopedia Kiddle.