robot de la enciclopedia para niños

Función monótona para niños

Enciclopedia para niños

En matemáticas, una función entre conjuntos ordenados se dice monótona (o isótona) si conserva el orden dado. Las funciones de tal clase surgieron primero en cálculo, y fueron luego generalizadas al entorno más abstracto de la teoría del orden. Aunque los conceptos generalmente coinciden, las dos disciplinas han desarrollado una terminología ligeramente diferente; mientras en cálculo se habla de funciones monótonamente crecientes y monótonamente decrecientes (o simplemente crecientes y decrecientes), en la teoría del orden se usan los términos monótona y antítona, o se habla de funciones que conservan e invierten el orden.

Definición general

Sea

f:P\to Q

una función entre dos conjuntos P y Q, donde cada conjunto tiene un orden parcial (los dos se denotarán por ≤). En cálculo se habla de funciones entre subconjuntos de los reales, y el orden ≤ no es otro que el orden usual de la recta real, aunque esto no es esencial para la definición.

La función f es monótona si y solo si x \leq y implica f(x) \leq f(y) (es decir, la función es creciente), o bien x \leq y implica f(x) \geq f(y) (es decir, la función es decreciente). En otras palabras, una función es monótona si conserva el orden.

Es decir una función es monótona cuando es creciente o decreciente en todo su dominio.

Funciones booleanas

contradicción A y B y C A y B A y C B y C (A y B) o (A y C) (A y B) o (B y C) (A y C) o (B y C) A B C (A o B) y (A o C) y (B o C) <==> (A y B) o (A y C) o (B y C) (A o B) y (A o C) (A o B) y (B o C) (A o C) y (B o C) A o B A o C B o C A o B o C tautologíaArchivo:Monotone Boolean functions 0,1,2,3
Loupe light.svg Los retículos distributivos libres de funciones booleanas monótonas sobre 0, 1, 2 y 3 argumentos.

En el álgebra de Boole, una función monótona es una tal que para todo ai y bi en {0,1} tales que a1b1, a2b2, ... , anbn

es cierto que se cumple

f(a1, ... , an) ≤ f(b1, ... , bn).

Las funciones booleanas monótonas son precisamente aquellas que pueden ser definidas como una composición de conjunciones y disyunciones, pero sin negaciones.

El número de estas funciones sobre n variables es conocido como el número de Dedekind de n.

Véase también

Kids robot.svg En inglés: Monotonic function Facts for Kids

kids search engine
Función monótona para Niños. Enciclopedia Kiddle.