robot de la enciclopedia para niños

Velocidad de escape para niños

Enciclopedia para niños
Archivo:Newton Cannon
Ilustración del razonamiento de Isaac Newton. Desde la cima de una montaña, un cañón dispara proyectiles con cada vez más velocidad. Los proyectiles A y B caen en tierra. El proyectil C entra en órbita circular y el D en órbita elíptica. El proyectil E se libera de la atracción terrestre.

La velocidad de escape es la velocidad inicial que hay que imprimirle a un objeto cualquiera para alejarse indefinidamente de un cuerpo o sistema más masivo al cual le vincula únicamente la gravedad. La velocidad de escape (ve) depende de la masa (M) del cuerpo o sistema masivo y de la distancia que separa los centros de masas de ambos (r) a través de la siguiente ecuación donde G es la constante de gravitación universal:

v_e=\sqrt{\frac{2GM}{r}}.

Notablemente, la velocidad de escape no depende de la masa del móvil que escapa. Tampoco depende de la dirección del lanzamiento, como se muestra en su deducción en términos puramente energéticos. En el caso de la Tierra, la velocidad de escape media desde el nivel del mar es de 11,19 km/s (kilómetros por segundo), lo que equivale a 40280 km/h (kilómetros por hora). A esto se le conoce como velocidad de escape de la Tierra. La velocidad de escape desde la superficie de la Luna es de 2,38 km/s, desde la superficie de Marte 5,03 km/s, y desde la superficie del Sol 617,7 km/s.

Concepto

El concepto de velocidad de escape tal y como se ha definido no es aplicable al cálculo de la velocidad inicial, o de lanzamiento, de móviles que se mueven bajo la influencia de otras fuerzas que favorecen su movimiento, como la propulsión, o que se le oponen, como la resistencia del aire. Pero sí cuando estas otras fuerzas están ausentes, tal y como sucede en la situación habitual de naves sin propulsión por encima de la atmósfera. En la astronáutica, en cualquier caso, la velocidad de escape rara vez es la velocidad objetivo hasta la cual deben acelerarse las naves para surcar el espacio. Se trata, por el contrario, de un límite superior al intervalo de velocidades que es necesario alcanzar una vez fuera de la atmósfera para iniciar el viaje espacial. De este modo, la velocidad de escape recibe el nombre de segunda velocidad cósmica, siendo el límite inferior, o primera velocidad cósmica, la mínima necesaria para entrar en órbita circular alrededor del astro, también conocida como velocidad circular.  

En el tercer volumen de los Principia de Newton (De Mundi Systemate) el científico inglés presenta el concepto de velocidad de escape mediante un ejemplo con un cañón que dispara proyectiles desde la cima de una montaña (ver figura), ejemplo en el cual se prescinde de la resistencia aerodinámica. Cuando el proyectil se lanza a una velocidad inferior a la velocidad circular, este colisiona contra la Tierra siguiendo una trayectoria parabólica. Cuando el proyectil se lanza a una velocidad igual a su velocidad circular, este entra en órbita alrededor de la Tierra siguiendo una trayectoria con forma de circunferencia. Cuando el proyectil se lanza a una velocidad superior a la velocidad circular pero inferior a la de escape, este entra en órbita alrededor de la Tierra siguiendo una trayectoria elíptica, en la cual la Tierra ocupa el primer foco. Cuando el proyectil se lanza a una velocidad igual a la de escape, el segundo foco de esta elipse se encuentra en el infinito y, en consecuencia, se trata de una parábola. Cuando el proyectil se lanza a una velocidad superior a la de escape, este sigue una órbita abierta llamada hipérbola.

La velocidad de escape depende de la forma del potencial gravitatorio en que se encuentra el objeto, por lo que el planteamiento sería ligeramente distinto si este es impulsado desde el interior o el exterior del astro al cual se encuentra vinculado. En el exterior del astro la velocidad de escape puede expresarse explícitamente en función de la altura h sobre su superficie mediante la siguiente ecuación donde R es el radio del astro (r = R + h):

v_e = \sqrt{\frac{2GM}{R + h}}.

La velocidad de escape desde la superficie de la Tierra es 11,19 km/s. A 200 km de altura sobre el nivel medio del mar, altitud que define la órbita terrestre estable más baja, es de 11,02 km/s. En este punto merece la pena indicar que la velocidad de escape del Sol a la distancia de la Tierra (una unidad astronómica) es de 42,04 km/s, esto es casi 4 veces la velocidad de escape de la propia Tierra. Así, un cuerpo proyectado por encima de la atmósfera a una velocidad superior a la velocidad de escape de la Tierra pero inferior a la del Sol a una unidad astronómica de distancia escaparía de la atracción terrestre pero no de la del Sol. Quedaría, por lo tanto, en órbita alrededor del Sol.

El mismo resultado se obtiene mediante un cálculo relativista, en cuyo caso la variable r representa la coordenada radial o circunferencia reducida de la métrica de Schwarzschild.

Definida un poco más formalmente, la "velocidad de escape" es la velocidad inicial requerida para ir desde un punto inicial en un campo de potencial gravitatorio hasta el infinito y terminar en el infinito con una velocidad residual de cero, sin ninguna aceleración adicional. Todas las velocidades y velocidades se miden con respecto al campo. Además, la velocidad de escape en un punto del espacio es igual a la velocidad que tendría un objeto si partiera del reposo desde una distancia infinita y fuera atraído por la gravedad hasta ese punto.

Deducción de la velocidad de escape

La velocidad de escape se puede deducir a partir de consideraciones puramente energéticas usando las siguientes fórmulas clásicas relacionadas con la energía cinética y potencial:


 E_\text{c} = \frac{1}{2}mv^2  \qquad
 E_\text{p} = -G\frac{Mm}{r}

El principio de conservación de la energía, al que imponemos la condición de que el objeto se aleje hasta una distancia infinita y quede en reposo, nos permite escribir:


 \frac{1}{2} m {v_e}^2 -G\frac{M m}{r}\; =\; 0

de modo que:

     v_e = \sqrt{\frac{2GM}{r}} = \sqrt{2gr}

donde:

El mismo resultado se obtiene mediante un cálculo relativista en el cual r representa la coordenada radial o circunferencia reducida de la métrica de Schwarzschild.

Tabla de velocidades de escape

Objeto Masa (kg) Radio (m) Velocidad de escape (km/s) con respecto a la Tierra
Sol 2,0 x 1030 7,0 x 108 617,5 55,18
Mercurio 3,3 x 1023 2,4 x 106 4,3 0,38
Venus 4,9 x 1024 6,1 x 106 10,4 0,92
Tierra 6,0 x 1024 6,4 x 106 11,2 1
Luna 7,3 x 1022 1,7 x 106 2,38 0,21
Marte 6,4 x 1023 3,4 x 106 5 0,45
Ceres 9,4 x 1020 4,9 x 105 0,5 0,04
Júpiter 1,9 x 1027 7,1 x 107 59,5 5,32

Véase también

Kids robot.svg En inglés: Escape velocity Facts for Kids

  • Velocidad orbital
  • Anexo:Datos de los planetas del sistema solar
  • Bala de cañón de Newton
kids search engine
Velocidad de escape para Niños. Enciclopedia Kiddle.