robot de la enciclopedia para niños

Número taxicab para niños

Enciclopedia para niños

Se dice que un número es el enésimo número taxicab si es el menor número que se puede descomponer como n sumas distintas de dos cubos positivos. El nombre de estos números proviene de una anécdota entre los matemáticos G. H. Hardy y S. A. Ramanujan (ver número de Hardy-Ramanujan).

Los números taxicab conocidos son los siguientes:


\begin{align}
\operatorname{Ta}(1) = 2 & = 1^3 + 1^3
\end{align}

\begin{align}
\operatorname{Ta}(2) = 1729 & = 1^3 + 12^3 \\
& = 9^3 + 10^3
\end{align}

\begin{align}
\operatorname{Ta}(3) = 87539319 & = 167^3 + 436^3 \\
& = 228^3 + 423^3 \\
& = 255^3 + 414^3
\end{align}

\begin{align}
\operatorname{Ta}(4) = 6963472309248 & = 2421^3 + 19083^3 \\
& = 5436^3 + 18948^3 \\
& = 10200^3 + 18072^3 \\
& = 13322^3 + 16630^3
\end{align}

\begin{align}
\operatorname{Ta}(5) = 48988659276962496 & = 38787^3 + 365757^3 \\
& = 107839^3 + 362753^3 \\
& = 205292^3 + 342952^3 \\
& = 221424^3 + 336588^3 \\
& = 231518^3 + 331954^3
\end{align}

\begin{align}
\operatorname{Ta}(6) = 24153319581254312065344 & = 582162^3 + 28906206^3 \\
& = 3064173^3 + 28894803^3 \\
& = 8519281^3 + 28657487^3 \\
& = 16218068^3 + 27093208^3 \\
& = 17492496^3 + 26590452^3 \\
& = 18289922^3 + 26224366^3
\end{align}

Límites superiores para números taxicab

Se conocen los siguientes límites superiores para estos números taxicab:

\begin{matrix}\operatorname{Ta}(7)& \le &24885189317885898975235988544&=&2648660966^3 + 1847282122^3 \\&&&=&2685635652^3 + 1766742096^3 \\&&&=&2736414008^3 + 1638024868^3 \\&&&=&2894406187^3 + 860447381^3 \\&&&=&2915734948^3 + 459531128^3 \\&&&=&2918375103^3 + 309481473^3\\&&&=&2919526806^3 + 58798362^3\end{matrix}
\begin{matrix}\operatorname{Ta}(8)& \le &50974398750539071400590819921724352&=&299512063576^3 + 288873662876^3 \\&&&=&336379942682^3 + 234604829494^3 \\&&&=&341075727804^3 + 224376246192^3 \\&&&=&347524579016^3 + 208029158236^3 \\&&&=&367589585749^3 + 109276817387^3 \\&&&=&370298338396^3 + 58360453256^3\\&&&=&370633638081^3 + 39304147071^3\\&&&=&370779904362^3 + 7467391974^3\end{matrix}
\begin{matrix}\operatorname{Ta}(9)& \le &136897813798023990395783317207361432493888&=&41632176837064^3 + 40153439139764^3 \\&&&=&46756812032798^3 + 32610071299666^3 \\&&&=&47409526164756^3 + 31188298220688^3 \\&&&=&48305916483224^3 + 28916052994804^3 \\&&&=&51094952419111^3 + 15189477616793^3 \\&&&=&51471469037044^3 + 8112103002584^3\\&&&=&51518075693259^3 + 5463276442869^3\\&&&=&51530042142656^3 + 4076877805588^3\\&&&=&51538406706318^3 + 1037967484386^3\end{matrix}
\begin{matrix}\operatorname{Ta}(10)& \le &7335345315241855602572782233444632535674275447104&=&15695330667573128^3 + 15137846555691028^3 \\&&&=&17627318136364846^3 + 12293996879974082^3 \\&&&=&17873391364113012^3 + 11757988429199376^3 \\&&&=&18211330514175448^3 + 10901351979041108^3 \\&&&=&19262797062004847^3 + 5726433061530961^3 \\&&&=&19404743826965588^3 + 3058262831974168^3\\&&&=&19422314536358643^3 + 2059655218961613^3\\&&&=&19426825887781312^3 + 1536982932706676^3\\&&&=&19429379778270560^3 + 904069333568884^3\\&&&=&19429979328281886^3 + 391313741613522^3\end{matrix}
\begin{matrix}\operatorname{Ta}(11)& \le &2818537360434849382734382145310807703728251895897826621632&=&11410505395325664056^3 + 11005214445987377356^3 \\&&&=&12815060285137243042^3 + 8937735731741157614^3 \\&&&=&12993955521710159724^3 + 8548057588027946352^3 \\&&&=&13239637283805550696^3 + 7925282888762885516^3 \\&&&=&13600192974314732786^3 + 6716379921779399326^3 \\&&&=&14004053464077523769^3 + 4163116835733008647^3\\&&&=&14107248762203982476^3 + 2223357078845220136^3\\&&&=&14120022667932733461^3 + 1497369344185092651^3\\&&&=&14123302420417013824^3 + 1117386592077753452^3\\&&&=&14125159098802697120^3 + 657258405504578668^3\\&&&=&14125594971660931122^3 + 284485090153030494^3\end{matrix}
\begin{matrix}\operatorname{Ta}(12)& \le &73914858746493893996583617733225161086864012865017882136931801625152&=&33900611529512547910376^3 + 32696492119028498124676^3 \\&&&=&38073544107142749077782^3 + 26554012859002979271194^3\\&&&=&38605041855000884540004^3 + 25396279094031028611792^3 \\&&&=&39334962370186291117816^3 + 23546015462514532868036^3 \\&&&=&40406173326689071107206^3 + 19954364747606595397546^3 \\&&&=&41606042841774323117699^3 + 12368620118962768690237^3 \\&&&=&41912636072508031936196^3 + 6605593881249149024056^3 \\&&&=&41950587346428151112631^3 + 4448684321573910266121^3 \\&&&=&41960331491058948071104^3 + 3319755565063005505892^3 \\&&&=&41965847682542813143520^3 + 1952714722754103222628^3 \\&&&=&41965889731136229476526^3 + 1933097542618122241026^3 \\&&&=&41967142660804626363462^3 + 845205202844653597674^3\end{matrix}

Véase también

Kids robot.svg En inglés: Taxicab number Facts for Kids

  • Número cabtaxi
  • número de Hardy-Ramanujan
  • Número Taxicab generalizado
kids search engine
Número taxicab para Niños. Enciclopedia Kiddle.