robot de la enciclopedia para niños

Choque elástico para niños

Enciclopedia para niños
Archivo:Elastischer stoß
Dos masas iguales chocan elásticamente. Se observa la transferencia total de momento lineal de una masa a la otra, de tal modo que después del impacto, la que tenía movimiento ahora se queda estática mientras que la que estaba en reposo adquiere una velocidad igual a la que se desplazaba la primera, de tal modo que el momento lineal y la energía cinética se conserve.
Archivo:Elastischer stoß3
Choque elástico entre dos cuerpos de distinta masa moviéndose con igual rapidez en sentidos opuestos.
Archivo:Elastischer stoß 2D
Choque elástico entre dos monedas. En esta animación se muestra como se modifican los momentos de lineales de cada moneda individual (representado por una flecha azul), de tal modo que el momento lineal total del sistema sea el mismo antes y después de la colisión (flecha roja).
Archivo:Translational motion
Mientras la radiación de cuerpo negro no escape de un sistema, los átomos en agitación térmica experimentan esencialmente colisiones elásticas. En promedio, los átomos rebotan entre sí manteniendo la misma energía cinética después de cada colisión. Aquí, los átomos de helio a temperatura ambiente se muestran retrasados dos trillones de veces. Cinco átomos están coloreados de rojo para facilitar el seguimiento de sus movimientos.

En física, se habla de un choque elástico (también, colisión elástica) entre dos o más cuerpos cuando se conserva la energía cinética total del sistema de ambos durante la interacción. Durante la misma, la cantidad de movimiento, momentum o momento lineal del sistema también se conserva, como consecuencia de que todas las fuerzas involucradas en el choque son interiores al sistema de cuerpos (ver leyes de Newton).

Durante el choque elástico, la restricción de conservar la energía cinética del sistema, implica que durante la colisión no se emite sonido, calor, ni se producen deformaciones permanentes en los cuerpos como consecuencia del impacto.

Si en una colisión se produce deformaciones permanentes en uno o más de los cuerpos, sonido, calor u otro mecanismo de pérdida de energía, se denomina inelásticas. En ese caso la pérdida de energía puede ser total o parcial.

Por otro lado, los choques en que después la energía cinética se ve incrementada, se denominan choque explosivos. Por ejemplo, un dispositivo elástico instalado en uno de los cuerpos de tal modo que se dispare con el contacto de otro.

Choque elástico en 1 dimensión entre 2 partículas

Los choques elásticos en una dimensión entre dos masas puntuales constituyen una forma sencilla de estudiar el fenómeno y sus resultados son fácilmente extrapolables a otros casos.

Para esto imagínese dos masas puntuales, una de masa m_1 moviéndose con una velocidad v_1 constante, y otra de masa m_2 con velocidad constante v_2 sobre la misma línea y dispuestas en rumbo de colisión. Se desea conocer cuáles serán las velocidades de cada una de estas partículas después de la colisión, cuando la misma es del tipo elástica.

Si se llaman u_1 y u_2 respectivamente a dichas velocidades, se puede escribir las condiciones de conservación de los choque elásticos como:

Conservación del momento lineal:


m_{1}v_{1}+m_{2}v_{2}=m_{1}u_{1}+m_{2}u_{2}

Conservación de la Energía (cinética):


\frac{1}{2}m_{1}v_{1}^{2}+\frac{1}{2}m_{2}v_{2}^{2}=\frac{1}{2}m_{1}u_{1}^{2}+\frac{1}{2}m_{2}u_{2}^{2}

Al resolver ambas ecuaciones se obtiene:


u_{1}=\frac{v_{1}(m_{1}-m_{2})+2v_{2}m_{2}}{m_{1}+m_{2}}

u_{2}=\frac{v_{2}(m_{2}-m_{1})+2v_{1}m_{1}}{m_{1}+m_{2}}

Soluciones de casos extremos

Existen tres casos particulares de interés. Para ejemplificar estos casos se va a suponer que la masa 2 siempre se encuentra en reposo (v_2), mientras que la masa 1 se mueve con velocidad v_1 en rumbo de colisión con la masa 2. Esta condición no pierde generalidad, dado que mediante una transformación de Galileo siempre se puede llevar cualquier situación a una en que el observador se encuentre en el marco de referencia solidario a la masa 2 antes del choque.

1. m_1=m_2: cuando ambas masas son iguales existe una transferencia completa de la cantidad de movimiento. La cantidad de movimiento de una masa se transmite a la otra y viceversa. En el caso analizado de v_2=0, la partícula 1 entrega toda su cantidad de movimiento a la partícula 2 durante el choque. La situación final es que la partícula 1 queda quieta en el lugar de 2 y la partícula 2 ahora se desplaza con la velocidad que traía antes la 1 (u_1=0 y u_2=v_1)

2. m_1<<m_2: En este caso, la partícula 2 funciona como una pared, se mantiene inamovible, mientras que la partícula 1 rebota contra la segunda, con la misma velocidad pero de sentido contrario. (u_1=-v_1 y u_2=0). En estos casos \Delta p_1 =-2p_1.

Cabe destacar que cuando en física se usa la palabra cero o infinito, nos referimos a valores que son muy pequeños o muy grandes en comparación con los otros valores en juego de la misma magnitud. Con esto, se aclara que la condición m_1<<m_2 se lo compara con un choque contra una pared, realmente se está diciendo que las velocidades entre el resultado dado y las reales son muy pequeñas comparadas con los errores de medición. En la realidad, m_2 no queda del todo estática, sino que adquiere una casi imperceptible velocidad en dirección contraria. Esta pequeña diferencia no suele ser relevante en muchos de los casos.

3. m_1>>m_2: Este es el caso del choque de un camión con un mosquito (un mosquito elástico). La masa 1 no cambia su velocidad, como si nada hubiera ocurrido. Por otro lado, la masa 2 sale disparada con el doble de la velocidad de la masa 1.

Véase también

Kids robot.svg En inglés: Elastic collision Facts for Kids

kids search engine
Choque elástico para Niños. Enciclopedia Kiddle.