robot de la enciclopedia para niños

Teoría del campo cristalino para niños

Enciclopedia para niños

La teoría de campo cristalino (TCC) es un modelo teórico que describe la estructura electrónica de aquellos compuestos de los metales de transición que pueden ser considerados compuestos de coordinación. La teoría de campo cristalino explica exitosamente algunas de las propiedades magnéticas, colores, entalpías de hidratación y estructuras de espinela (octaédrica) de los complejos de los metales de transición, pero no acierta a describir las causas del enlace. La TCC fue desarrollada por los físicos Hans Bethe y John Hasbrouck van Vleck en la década de 1930. La TCC fue posteriormente combinada con la teoría de orbitales moleculares para producir la teoría del campo de ligandos que aunque resulta un poco más compleja también es más ajustada a la realidad, ya que se adentra además en la explicación del proceso de formación del enlace químico en los complejos metálicos.

Energía de estabilización de campo cristalino

La energía de estabilización de campo cristalino (EECC) es la estabilidad comparativa que resulta de colocar un ion de un metal de transición en un campo cristalino generado por un grupo de ligandos, en relación a colocar a ese mismo ion en un campo esférico. Esto se deduce del hecho de que, cuando los orbitales atómicos d se separan energéticamente en el campo formado por un grupo de ligandos, algunos de ellos terminan con una energía menor que la que tendrían en un campo perfectamente esférico conocido como baricéntrico. En un campo baricéntrico los cinco orbitales d se encontrarían degenerados. Por ejemplo, en el caso octaédrico, el grupo t2g se convierte en un grupo de menor energía que los orbitales en el baricentro. Como consecuencia de esto, si un electrón cualquiera se encuentra ocupando uno de estos orbitales, el ion metálico es más estable en ese campo de ligandos con respecto al baricentro en una cantidad conocida como EECC. Por el contrario, los orbitales eg en el caso octaédrico son de mayor energía que en un campo baricéntrico, de modo que cualquier electrón en uno de estos orbitales reduce la EECC.

Archivo:Separación de campo cristalino
Energía de estabilización de campo octaédrico

Si la separación entre los orbitales d en un campo octaédrico es Δoct, los tres orbitales t2g se encuentran estabilizados con respecto al baricentro en 2/5 de Δoct, y los orbitales eg se encuentran desestabilizados en 3/5 de Δoct. Como ejemplo podemos considerar dos configuraciones de electrones d5 mostradas anteriormente en esta misma página. El ejemplo de bajo espín (arriba) tiene cinco electrones en los orbitales t2g , de modo que la energía de estabilización de campo cristalino total es 5 x 2/5 Δoct = 2Δoct. En el ejemplo de alto espín (inferior) , la EECC es (3 x 2/5 Δoct) - (2 x 3/5 Δoct) = 0 - en este caso, la estabilización generada por los electrones en los orbitales inferiores es cancelada por el efecto desestabilizante de los electrones en los orbitales superiores.

La estabilización de campo cristalino es aplicable a los complejos de metales de transición con cualquier geometría, y es más permite predecir en cierto punto la geometría de los mismos con tanta precisión como la teoría de repulsión de pares de electrones de valencia. Es así que según esta teoría la razón por la cual tantos complejos d8 son cuadrados planos es el enorme grado de estabilización cristalina que esta geometría produce para este número de electrones.

Explicando el color de los complejos de transición

Los brillantes colores exhibidos por muchos compuestos de coordinación pueden ser explicados con facilidad por la TCC. Si los orbitales atómicos d de un catión central en un complejo dado se ven separados en dos grupos de energías diferentes como se describe más arriba, cuando esa molécula absorbe un fotón de luz visible, uno de sus electrones de un nivel de energía inferior absorbe la energía del fotón y "salta" hacia un nivel de mayor energía para formar un átomo en un estado momentáneamente excitado. La diferencia entre las energías del átomo entre su estado nativo o "basal" y su estado excitado es aproximadamente igual a la diferencia entre orbitales de menor y mayor energía (ver más adelante) y es igual a la energía transportada por el fotón. Como la diferencia de energía entre los dos niveles electrónicos es igual a la energía del fotón absorbido, es posible relacionar esta energía con la longitud de onda del fotón según:

\Delta E_{\rm electr\acute{o}n} = E_{\rm fot\acute{o}n} = h\nu = h \frac {c}{\lambda}

Donde:

Luego cada transición electrónica absorbe determinadas longitudes de onda de la luz. Si la transición absorbe longitudes de onda dentro del rango visible (420 a 750 nm), entonces el compuesto, al ser iluminado con luz blanca, se ve coloreado; y precisamente del color complementario al color absorbido.

Como se explica más arriba, ya que diferentes ligandos producen campos cristalinos de diferente fuerza, es posible observar diferentes colores. Para un metal dado, ligandos de campo débil producen complejos con una Δ pequeña, la cual absorbe luz de baja energía, frecuencia baja y longitud de onda larga. Por otro lado, ligandos de campo fuerte provocan una gran Δ, absorben luz de alta \nu y por lo tanto de corta \lambda.

Los complejos de transición presentan brillantes colores debido a que las diferencias en las energías de sus orbitales d se encuentran en el orden de las energías transportadas por las ondas del espectro visible.

Sin embargo es bastante extraño que la energía del fotón absorbido se corresponda exactamente con la brecha Δ; ya que existen numerosos factores que también afectan la diferencia de energía entre el estado basal y los diferentes estados excitados, cosas tales como las repulsiones electrón-electrón y el efecto Jahn-Teller.

¿Que color es el que se observa?

Archivo:Colorwheel
Colores complementarios

Esta rueda de colores muestra en los radios opuestos de que color aparecerá un compuesto si sólo absorbe un único color en el espectro visible. Por ejemplo, si el compuesto absorbe la luz de color rojo, aparecerá de color verde.

λ absorbida versus color observado
400 nm Se absorbe violeta, se observa verde-amarillo (λ 560 nm)
450 nm Se absorbe azul, se observa amarillo (λ 600 nm)
490 nm Se absorbe verde-azul, se observa rojo (λ 620 nm)
570 nm Se absorbe verde-amarillo, se observa violeta (λ 410 nm)
580 nm Se absorbe amarillo, se observa azul oscuro (λ 430 nm)
600 nm Se absorbe naranja, se observa azul (λ 450 nm)
650 nm Se absorbe rojo, se observa verde (λ 520 nm)

Diagramas de separación de campo cristalino

Diagramas de separación de campo cristalino
Coordinación Imagen Diagrama de energía
Octaédrica Octahedral-3D-balls.png
Octaedrico.PNG
Bipiramidal pentagonal AX7E0-3D-balls.png
Bipiramidal pentagonal.PNG
Antiprisma cuadrada Square-antiprismatic-3D-balls.png
Antiprismatico cuadrado.PNG
Plano-cuadrada Square-planar-3D-balls.png
Cuadrado plano.PNG
Piramidal cuadrada Square-pyramidal-3D-balls.png
Piramidal cuadrado.PNG
Tetraédrica Tetrahedral-3D-balls.png
Tetraedrico.PNG
Bipirámide trigonal Trigonal-bipyramidal-3D-balls.png
Bipiramidal Trigonal.PNG

Galería

Octaédrico  
Bipiramidal pentagonal  
Cuadrado plano  
Piramidal cuadrado  
Tetraédrico  
Bipiramidal trigonal  
Piramidal pentagonal  

Véase también

Kids robot.svg En inglés: Crystal field theory Facts for Kids

kids search engine
Teoría del campo cristalino para Niños. Enciclopedia Kiddle.