robot de la enciclopedia para niños

Descomposición en fracciones simples para niños

Enciclopedia para niños

El método de descomposición en fracciones simples consiste en descomponer un cociente de polinomios en una suma de fracciones de polinomios de menor grado. Se utiliza principalmente en cálculo integral. El requisito más importante es que el grado del polinomio del denominador sea estrictamente mayor que el del numerador.

Características

Para mayor claridad, sea:

\frac{A(x)}{B(x)}= \frac{a_mx^m+a_{m-1}x^{m-1}+...+a_1x+a_0}{b_nx^n+b_{n-1}x^{n-1}+...+b_1x+b_0}

donde: m<n \,. Para reducir la expresión a fracciones parciales se debe expresar la función B(x) \, de la forma:

B(x)= (x+a_n)(x+a_{n-1})...(x+a_1)(x+a_0) \,
o
B(x)= (a_nx^2+b_nx+c_n)(a_{n-1}x^2+b_{n-1}x+c_{n-1})...(a_1x^2+b_1x+c_1)(a_0x^2+b_0x+c_0) \,

es decir, como el producto de factores lineales o cuadráticos.

Casos

Se distinguen 4 casos:

Factores lineales distintos

Donde ningún par de factores es idéntico.

\frac{A_1}{(x+a_1)} + \frac{A_2}{(x+a_2)} + ... + \frac{A_n}{(x+a_n)}

Donde A_1, A_2, ..., A_n \, son constantes a determinar, y ningún denominador se anula.

Factores lineales repetidos

Donde los pares de factores son idénticos.

\frac{A_1}{(x+a_1)} + \frac{A_2}{(x+a_1)^2} + ... + \frac{A_n}{(x+a_1)^n}

Donde A_1, A_2, ..., A_n \, son constantes a determinar, y ningún denominador se anula.

Factores cuadráticos distintos

Donde ningún par de factores es igual.

\frac{A_1 x +B_1}{(a_1 x^2+b_1 x+c_1)} + \frac{A_2 x +B_2}{(a_2 x^2+b_2 x+c_2)} + ... + \frac{A_n x +B_n}{(a_n x^2+b_n x+c_n)}

Donde A_1, B_1, A_2, B_2, ..., A_n, B_n \, son constantes a determinar, y ningún denominador se anula.

Factores cuadráticos repetidos

\frac{A_1 x +B_1}{(a_1 x^2+b_1 x+c_1)} + \frac{A_2 x +B_2}{(a_1 x^2+b_1 x+c_1)^2}  + ... + \frac{A_n x +B_n}{(a_1 x^2+b_1 x+c_1)^n}

Donde  A_1, B_1, A_2, B_2, ..., A_n, B_n \, son constantes a determinar, y ningún denominador se anula.

Cómputo de las constantes

Para hallar las constantes, en el caso de factores lineales distintos se puede utilizar la siguiente fórmula:

A_k = \left[\frac{A(x)}{B(x)}(x+a_k)\right]_{x=-a_k}

en donde k = (1, 2, ..., n) \,

Para los otros casos no existe una formulación específica. Sin embargo, estos se pueden resolver simplificando y formando un sistema de ecuaciones con cada una de las A_k \,, la resolución del sistema proporciona los valores de los A_k \,.

Ejemplo 1

Sea \frac{x+3}{(x+1)(x+2)} Se puede descomponer en \frac{x+3}{(x+1)(x+2)}=\frac{a}{x+1}+\frac{b}{x+2}

Necesitamos encontrar los valores a y b

El primer paso es deshacernos del denominador, lo que nos lleva a:

\frac{x+3}{(x+1)(x+2)}=\frac{a(x+2) + b(x+1)}{(x+1)(x+2)}

Simplificando

x+3= a (x+2)+ b (x+1)

El siguiente paso es asignar valores a x, para obtener un sistema de ecuaciones, y de este modo calcular los valores a y b.

Sin embargo, podemos hacer algunas simplificaciones asignado


\begin{array}{rlr}
 x    & =-2 & \; \mbox{lo que produce}\\
 -2+3 & = a (-2+2)+b(-2+1) & \; calculando\\
 1    & = -b  & \; \mbox{ es decir}\\
 b    & = -1
\end{array}

Para el caso de a observamos que x=-1 nos facilita el proceso


\begin{array}{rlr}
 x    & =-1                & {} \\
 -1+3 & = a (-1+2)+b(-1+1) & {} \\
 2    & = a                & {} \\
 a    & = 2                & {}
\end{array}

Siendo el resultado, el siguiente


\frac{x+3}{(x+1)(x+2)}=\frac{2}{x+1}+\frac{-1}{x+2}

Ejemplo 2

Sea \frac{x^2+3x+1}{(x+1)^3}

Se puede descomponer de esta manera

\frac{a}{x+1}+\frac{b}{(x+1)^2}+\frac{c}{(x+1)^3}

multiplicando por (x+1)^3, tenemos ejemplo:

\frac{(x^2+3x+1)(x+1)^3}{(x+1)^3}=\frac{a(x+1)^3}{x+1}+\frac{b(x+1)^3}{(x+1)^2}+
\frac{c(x+1)^3}{(x+1)^3}

Simplificando

x^2+3x+1=a(x+1)^2+b(x+1)+c

Procedemos a asignar valores a x, para formar un sistema de ecuaciones


\begin{array}{lrclr}
Sea &  x & =  & 0          & \mbox{resulta en} \\
{}  &  1 & =  & a + b + c  & {} \\
Sea &  x & =  & 1          & {} \\
{}  &  5 & =  & 4a +2b + c & {} \\
Sea &  x & =  & -1         & {} \\
{}  & -1 & =  & 0 + 0 + c  & {} 
\end{array}

Resolviendo el sistema de ecuaciones, tenemos finalmente


\frac{x^2+3x+1}{(x+1)^3} = \frac{1}{x+1}+\frac{1}{(x+1)^2}+\frac{-1}{(x+1)^3}

Ejemplo 3

Tenemos \frac{1}{x(x^2+1)} que se puede convertir en \frac{a}{x}+\frac{bx+c}{x^2+1}

Multiplicamos por x(x^2+1)

Tenemos \frac{x(x^2+1)}{x(x^2+1)}=\frac{ax(x^2+1)}{x}+\frac{(bx+c)x(x^2+1)}{x^2+1}

Simplificando

1=a(x^2+1)+(bx+c)x

Ahora podemos asignar valores a x


\begin{array}{lrcl}
Si &  x & = & 0                   \\
{} &  1 & = & a                   \\
Si &  x & = & 1                   \\
{} &  1 & = & 2a + (b+c) \cdot 1 \\
{} &  1 & = & 2 \cdot 1 + b + c  \\
{} & -1 & =  & b+c                \\
Si &  x & =  & -1                 \\
{} &  1 & =  & 2a + (-b+c) \cdot -1 \\
{} & -1 & =  & b -c
\end{array}

Resolviendo el sistema, resulta a = 1 \; b=-1 \; c=0

Y el problema se resuelve de esta manera

\frac{1}{x(x^2+1)}=\frac{1}{x}+\frac{-x}{x^2+1}

Véase también

Kids robot.svg En inglés: Partial fraction decomposition Facts for Kids

kids search engine
Descomposición en fracciones simples para Niños. Enciclopedia Kiddle.